Lightwave primer

This paper presents an introduction to the principles of lightwave system engineering. The treatment is historical rather than categorical-lightwave systems are described in terms of their evolution through four generations of technology, from a first generation operating at 0.85 μm wavelength over multimode fiber to a fourth generation employing coherent techniques at 1.55 μm. Basic engineering considerations such as fiber dispersion and receiver sensitivity are introduced early, then refined as the discussion progresses toward higher-performance, more sophisticated systems. The fundamental mechanisms that limit the performance of a given technology are quantified, and a figure of merit, the product of bit rate times maximum repeater spacing, is estimated. Values of this product range from about 2 Gbits/s . km for first-generation technology to roughly 900 Gbits/s . km for coherent systems.

[1]  F. Kapron,et al.  RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES , 1970 .

[2]  S. Personick,et al.  Time dispersion in dielectric waveguides , 1971 .

[3]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[4]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[5]  E. A. J. Marcatili,et al.  Multimode theory of graded-core fibers , 1973 .

[6]  J. E. Goell An optical repeater with high-impedance input amplifier , 1974 .

[7]  P. Runge,et al.  An Experimental 50 Mb/s Fiber Optic PCM Repeater , 1976, IEEE Trans. Commun..

[8]  David N. Payne,et al.  Determination of the wavelength of zero material dispersion in optical fibres by pulse-delay measurements , 1977 .

[9]  R. Dixon,et al.  Continuously operated (Al,Ga)As double‐heterostructure lasers with 70 °C lifetimes as long as two years , 1977 .

[10]  Ivan P. Kaminow,et al.  Profile dispersion effects on transmission bandwidths in graded index optical fibers , 1978 .

[11]  L. G. Cohen,et al.  Pulse dispersion properties of fibers with various material constituents , 1978, The Bell System Technical Journal.

[12]  Kiyoshi Nakagawa,et al.  Detailed evaluation of an attainable repeater spacing for fibre transmission at 1.3 μm and 1.55 μm wavelengths , 1979 .

[13]  N. Imoto,et al.  Characteristics of dispersion free single-mode fiber in the 1.5 µm wavelength region , 1980, IEEE Journal of Quantum Electronics.

[14]  K. Hill,et al.  Modal noise in multimode fiber links: theory and experiment. , 1980, Optics letters.

[15]  K. Nakagawa,et al.  Laser Mode Partition Noise Evaluation for Optical Fiber Transmission , 1980, IEEE Trans. Commun..

[16]  Tingye Li,et al.  Structures, parameters, and transmission properties of optical fibers , 1980 .

[17]  K. Petermann,et al.  Nonlinear distortions and noise in optical communication systems due to fiber connectors , 1980 .

[18]  N. Imoto,et al.  Wavelength dispersion characteristics of single-mode fibers in low-loss region , 1980, IEEE Journal of Quantum Electronics.

[19]  C. A. Burrus,et al.  High-speed digital lightwave communication using LEDs and PIN photodiodes at 1.3 μm , 1980, The Bell System Technical Journal.

[20]  H. Murata,et al.  Low-loss single-mode fiber development and splicing research in Japan , 1981 .

[21]  Yoshihisa Yamamoto,et al.  Coherent optical fiber transmission systems , 1981 .

[22]  Single-mode and multimode fibers CO-doped with fluorine , 1981 .

[23]  T. Kimura,et al.  2 Gbit/s optical transmission experiments at 1.3 μm with 44 km single-mode fibre , 1981 .

[24]  Repeater spacing of 280 Mbit/s single-mode fiber-optic transmission system using 1.55 µm laser diode source , 1982 .

[25]  D. Cotter Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm , 1982 .

[26]  C. J. Todd,et al.  Components and systems for long-wavelength monomode fibre transmission , 1982 .

[27]  J. Yamada,et al.  Gigabit/s optical receiver sensitivity and zero-dispersion single-mode fiber transmission at 1.55 µm , 1982 .

[28]  D. Cotter Transient stimulated Brillouin scattering in long single-mode fibres , 1982 .

[29]  Takaaki Mukai,et al.  S/N and Error Rate Performance in AlGaAs Semiconductor Laser Preamplifier and Linear Repeater Systems , 1982 .

[30]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[31]  K. Nakagawa,et al.  Mode partition noise characteristics in high-speed modulated laser diodes , 1982 .

[32]  D. P. Jablonowski,et al.  Performance of the MCVD preform process in mass production conditions , 1982 .

[33]  D. Cotter Suppression of stimulated Brillouin scattering during transmission of high-power narrowband laser light in monomode fibre , 1982 .

[34]  T. Okoshi,et al.  Heterodyne and Coherent Optical Fiber Communications: Recent Progress , 1982 .

[35]  Suzanne R. Nagel,et al.  Current status of MCVD: process and performance , 1982 .

[36]  Paul D. Lazay,et al.  101-km Lightwave Undersea System Experiment at 274 Mb/s , 1982 .

[37]  T. Miyashita,et al.  Infrared optical fibers , 1982 .

[38]  K. Ogawa,et al.  Analysis of mode partition noise in laser transmission systems , 1982, IEEE Journal of Quantum Electronics.

[39]  J. Stone,et al.  Reduction of loss due to OH in optical fibres by a two-step OH - OD exchange process , 1982 .

[40]  K. Utaka,et al.  1.5 µm range InGaAsP/InP distributed feedback lasers , 1982, IEEE Journal of Quantum Electronics.

[41]  Leonard George Cohen,et al.  Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm–1.65 μm wavelength range , 1982 .

[42]  P. J. Chidgey,et al.  102 km optical fibre transmission experiments at 1.52 μm using an external cavity controlled laser transmitter module , 1982 .

[43]  N. A. Olsson,et al.  High‐speed direct single‐frequency modulation with large tuning rate and frequency excursion in cleaved‐coupled‐cavity semiconductor lasers , 1983 .

[44]  J. Simon Semiconductor Laser Amplifier for Single Mode Optical Fiber Communications , 1983 .

[45]  A R Chraplyvy,et al.  Optical gain exceeding 35 dB at 1.56 microm due to stimulated Raman scattering by molecular D(2) in a solid silica optical fiber. , 1983, Optics letters.

[46]  Shigehisa Arai,et al.  Dynamic single-mode semiconductor lasers with a distributed reflector , 1983 .

[47]  T. Katsuyama,et al.  Low-loss single polarization fibers. , 1983, Applied optics.

[48]  R. Wyatt,et al.  1.52 μm PSK heterodyne experiment featuring an external cavity diode laser local oscillator , 1983 .

[49]  J. Stauffer,et al.  FT3C-A Lightwave System for Metropolitan and Intercity Applications , 1983, IEEE J. Sel. Areas Commun..

[50]  A. Tomita Cross talk caused by stimulated Raman scattering in single-mode wavelength division multiplexing PUBLICs , 1983 .

[51]  Tingye Li,et al.  Advances in Optical Fiber Communications: An Historical Perspective , 1983, IEEE J. Sel. Areas Commun..

[52]  Y. Suematsu,et al.  Long-wavelength optical fiber communication , 1983, Proceedings of the IEEE.

[53]  Takashi Kimura,et al.  Fabry-Perot cavity type 1.5 μm InGaAsP BH-laser amplifier with small optical-mode confinement , 1983 .

[54]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[55]  A Tomita Cross talk caused by stimulated Raman scattering in single-mode wavelength-division multiplexed systems. , 1983, Optics letters.

[56]  K. Okamoto,et al.  Fabrication of polarization-maintaining and absorption-reducing fibers , 1983 .

[57]  A. Chraplyvy,et al.  Performance degradation due to stimulated Raman scattering in wavelength-division-multiplexed optical-fibre systems , 1983 .

[58]  T. Okoshi,et al.  Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator , 1984 .

[59]  C. A. Burrus,et al.  Measured spectral linewidth of single-frequency 1.3 and 1.5 μm injection lasers , 1984 .

[60]  S. Davidow,et al.  A 90-Mb/s transmission experiment in single-mode fibers using 1.5-µm multi-longitudinal- mode InAsGaP/InP lasers , 1984, Journal of Lightwave Technology.

[61]  M. Lax,et al.  Partition fluctuations in nearly single-longitudinal-mode lasers , 1984 .

[62]  R. Linke Direct gigabit modulation of injection lasers - Structure-dependent speed limitations , 1984, Journal of Lightwave Technology.

[63]  Vincent Chan,et al.  Cancellation of local oscillator intensity noise caused by the relaxation oscillation of GaAIAs lasers with a dual-detector heterodyne receiver , 1984 .

[64]  Katsumi Emura,et al.  100 Mbit/s ASK heterodyne detection experiment using 1.3 μm DFB-laser diodes , 1984 .

[65]  Donald M. Fye Practical limitations on optical amplifier performance , 1984 .

[66]  W. J. Devlin,et al.  Packaged frequency-stable tunable 20 kHz linewidth 1.5 μm InGaAsP external cavity laser , 1985 .

[67]  C. A. Burrus,et al.  Mode power partition events in nearly single-frequency lasers , 1985 .

[68]  Jay R. Simpson,et al.  Fabrication and performance of long lengths of silica core fiber , 1985 .

[69]  Steven K. Korotky,et al.  4Gb/s Transmission Experiment over 117km of Optical Fiber Using a Ti:LiNbO3 External Modulator , 1985 .

[70]  Stuart D. Walker,et al.  220 km AND 233 km TRANSMISSION EXPERIMENTS OVER LOW-LOSS DISPERSION-SHIFTED FIBRE AT 140 Mbit/s AND 34 Mbit/s , 1985 .

[71]  Low-loss dispersion-shifted single-mode fiber manufactured by the OVD process , 1985 .

[72]  R. Yen,et al.  4-Gbit/s transmission over 103 km of optical fiber using a novel electronic multiplexer/demultiplexer , 1985, Journal of Lightwave Technology.

[73]  R. Linke,et al.  Modulation induced transient chirping in single frequency lasers , 1985 .

[74]  Richard A. Linke,et al.  4 Gb/s Transmission over 103 km of Optical Fiber Using a Novel Electronic Multiplexer/Demultiplexer , 1985 .

[75]  Jay R. Simpson,et al.  The fabrication and performance of long lengths of silica core fiber , 1985 .