Molecular polarizability of Sc n , C n and endohedral Sc n @C m clusters

Abstract A method for the calculation of the molecular polarizability α using the interacting induced dipoles polarization model is presented. As an example, the method is applied to Scn, Cn and endohedral Scn@Cm clusters. The α are compared with reference calculations (PAPID). The Scn calculated using POLAR and Cn computed (POLAR and PAPID) are less polarizable than what is inferred. The Scn calculated (PAPID) are more polarizable than what is inferred. Previous experimental work yielded the opposite trend for Sin, GanAsm and GenTem larger clusters. However, previous theoretical work yielded the opposite trend for Sin, Gen and GanAsm small clusters.

[1]  H. A. Stuart Die Struktur des Freien Moleküls , 1952 .

[2]  L. Silberstein,et al.  L. Molecular refractivity and atomic interaction. II , 1917 .

[3]  Richard E. Smalley,et al.  Ammonia chemisorption studies on silicon cluster ions , 1991 .

[4]  Francisco Torrens,et al.  Theoretical characterization of iron and manganese porphyrins for catalyzed saturated alkane hydroxylations , 1997 .

[5]  Gerald D. Mahan,et al.  Davydov Splittings in Anthracene , 1964 .

[6]  H. Kuhn,et al.  Molecular Orbital Theory for Organic Chemists, von Andrew Streitwieser, Jr. John Wiley and Sons, Inc., New York und London 1961. 489 Seiten. Preis: Leinen DM 62,55 , 1963 .

[7]  R. Smalley,et al.  Fullerenes with metals inside , 1991 .

[8]  Michael R. Philpott,et al.  Dipole Davydov Splittings in Crystalline Anthracene, Tetracene, Naphthalene, and Phenanthrene , 1969 .

[9]  J. Cioslowski Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage , 1991 .

[10]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[11]  William Rhodes,et al.  Generalized Susceptibility Theory I. Theories of Hypochromism , 1967 .

[12]  Becker,et al.  Polarizabilities of isolated semiconductor clusters. , 1996, Physical review letters.

[13]  F Torrens,et al.  Torsional effects on the molecular polarizabilities of the benzothiazole (A)-benzobisthiazole (B) oligomer A-B13-A. , 1996, Journal of molecular graphics.

[14]  Weaver,et al.  Band dispersion and empty electronic states in solid C60: Inverse photoemission and theory. , 1991, Physical review. B, Condensed matter.

[15]  Richard W. Siegel,et al.  Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report , 1989 .

[16]  Roger Taylor,et al.  The chemistry of fullerenes , 1995, Nature.

[17]  J. Applequist,et al.  Atom charge transfer in molecular polarizabilities: application of the Olson-Sundberg model to aliphatic and aromatic hydrocarbons , 1993 .

[18]  Martin Saunders,et al.  Stable Compounds of Helium and Neon: He@C60 and Ne@C60 , 1993, Science.

[19]  K. Reichmann,et al.  C60La: a deflated soccer ball? , 1986, Journal of the American Chemical Society.

[20]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[21]  A. Streitwieser,et al.  A simple molecular orbital treatment of hyperconjugation , 1959 .

[22]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[23]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[24]  R. S. Mulliken Magic Formula, Structure of Bond Energies and Isovalent Hybridization , 1952 .

[25]  Robert S. Mulliken,et al.  Formulas and Numerical Tables for Overlap Integrals , 1949 .

[26]  Francisco Torrens,et al.  Interacting induced dipoles polarization model for molecular polarizabilities. Reference molecules, amino acids and model peptides , 1999 .

[27]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[28]  D. Bethune,et al.  Preparation and structure of crystals of the metallofullerene Sc2@C84 , 1994, Nature.

[29]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[30]  Y. Kayanuma,et al.  Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. , 1988, Physical review. B, Condensed matter.

[31]  Richard E. Smalley,et al.  Ultraviolet photoelectron spectroscopy of semiconductor clusters: Silicon and germanium , 1987 .

[32]  J. Cioslowski,et al.  Endohedral fullerites: A new class of ferroelectric materials. , 1992, Physical review letters.

[33]  K. C. Reichmann,et al.  Carbon clusters revisited: The ‘‘special’’ behavior of C60 and large carbon clusters , 1988 .

[34]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[35]  Endohedral and exohedral adsorption in C60: An analytical model , 1993 .

[36]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[37]  Francisco Torrens,et al.  Interacting induced dipoles polarization model for molecular polarizabilities: application to benzothiazole (A)-benzobisthiazole (B) oligomers AB13A , 1998 .

[38]  Andrew Streitwieser,et al.  Molecular orbital theory for organic chemists , 1961 .

[39]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[40]  Francisco Torrens Zaragozá Interacting Induced dipoles polarization in a force field for dipeptide models (Glycine Derivative). , 1994 .

[41]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[42]  Freeman,et al.  Photofragmentation of Mass-Resolved Si2-12+ clusters. , 1985, Physical review letters.

[43]  Steven G. Bratsch,et al.  Electronegativity equalization with Pauling units , 1984 .

[44]  M. M. Kreevoy A Theoretical Study of 1,4-Dithiadiene by the L.C.A.O.-M.O. Method , 1958 .

[45]  R. Parr,et al.  Molecular Orbital Calculations of Vibrational Force Constants. I. Ethylene , 1948 .

[46]  Weaver,et al.  Electronic states of solid C60: Symmetries and photoionization cross sections. , 1991, Physical review. B, Condensed matter.

[47]  Phillips,et al.  Electron-correlation energies and the structure of Si13. , 1993, Physical review. B, Condensed matter.

[48]  Martin F. Jarrold,et al.  Nanosurface Chemistry on Size-Selected Silicon Clusters , 1991, Science.

[49]  James E. Huheey,et al.  The Electronegativity of Groups , 1965 .

[50]  J. Martins,et al.  Analysis of occupied and empty electronic states of C60 , 1991 .

[51]  A. Ogura,et al.  Raman spectra of size-selected silicon clusters and comparison with calculated structures , 1993, Nature.

[52]  Arthur I. Vogel,et al.  369. Physical properties and chemical constitution. Part XXIII. Miscellaneous compounds. Investigation of the so-called co-ordinate or dative link in esters of oxy-acids and in nitro-paraffins by molecular refractivity determinations. atomic, structural, and group parachors and refractivities , 1948 .

[53]  D. Bethune,et al.  Electron paramagnetic resonance studies of lanthanum-containing C82 , 1992, Nature.

[54]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[55]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[56]  Francisco Torrens,et al.  Vectorized ‘‘TOPO’’ Program for the Theoretical Simulation of Molecular Shape , 1991 .

[57]  Steven G. Louie,et al.  Quantum theory of real materials , 1996 .

[58]  S. C. O'brien,et al.  Lanthanum complexes of spheroidal carbon shells , 1985 .

[59]  M. S. de Vries,et al.  Atoms in carbon cages: the structure and properties of endohedral fullerenes , 1993, Nature.

[60]  Christophe Voisin,et al.  Computation of accurate electronic molecular polarizabilities , 1992 .

[61]  R. S. Mulliken Quelques aspects de la théorie des orbitales moléculaires , 1949 .

[62]  R. S. Mulliken Overlap Integrals and Chemical Binding1 , 1950 .

[63]  L. Silberstein,et al.  VII. Molecular refractivity and atomic interaction , 1917 .

[64]  L. Mitas,et al.  Quantum Monte Carlo determination of electronic and structural properties of Sin clusters (n <= 20). , 1995, Physical review letters.

[65]  L. Silberstein XIX. Dispersion and the size of molecules of hydrogen, oxygen, and nitrogen , 1917 .

[66]  James R. Chelikowsky The Electronic and Structural Properties of Semiconductor Clusters and Nanostructures , 1999 .

[67]  Richard W. Siegel,et al.  Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .

[68]  M. Simonetta,et al.  Neighboring Carbon and Hydrogen. XVI. 1,3-Interactions and Homoallylic Resonance , 1954 .

[69]  Y. Maruyama,et al.  Electrochemistry and Ab Initio Study of the Dimetallofullerene La2@C80 , 1995 .

[70]  M. Dewar,et al.  A Molecular Orbital Theory of Organic Chemistry. II.1 The Structure of Mesomeric Systems , 1952 .

[71]  D. Bethune,et al.  Structural information on Y ions in C82 from EXAFS experiments , 1993 .

[72]  M. Saunders,et al.  Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70 , 1994, Nature.

[73]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[74]  Phillips,et al.  Interatomic force fields for silicon microclusters. , 1991, Physical review. B, Condensed matter.

[75]  R. S. Mulliken,et al.  Overlap Integrals and Chemical Binding , 1949 .