Creation of a needle of longitudinally polarized light in vacuum using binary optics

Light is often thought of in terms of radial polarization, but longitudinal polarization is also possible, and it has some intriguing possibilities for particle acceleration. Binary optics, combined with a high-numerical-aperture lens, is a potential route to achieving light with this unusual property.

[1]  Nanguang Chen,et al.  Binary-phase spatial filter for real-time swept-source optical coherence microscopy. , 2007, Optics letters.

[2]  T G Brown,et al.  Polarization-vortex-driven second-harmonic generation. , 2003, Optics letters.

[3]  Richard H. Pantell,et al.  A high‐energy, laser accelerator for electrons using the inverse Cherenkov effect , 1983 .

[4]  Qiwen Zhan,et al.  Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. , 2006, Optics letters.

[5]  B. Luk’yanchuk,et al.  Energy flow around a small particle investigated by classical Mie theory , 2004 .

[6]  Juan Campos,et al.  Axially invariant pupil filters , 2000 .

[7]  Boris S. Luk'yanchuk,et al.  Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field , 2006 .

[8]  Fuxi Gan,et al.  Phase-shifting apodizers for increasing focal depth. , 2002, Applied optics.

[9]  S. Hell,et al.  Erratum: Z-polarized confocal microscopy (Journal of Biomedical Optics (July 2001) 6:3 (273-276)) , 2001 .

[10]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[11]  Luping Shi,et al.  Subwavelength and super-resolution nondiffraction beam , 2006 .

[12]  I. Golub,et al.  Toward the subdiffraction focusing limit of optical superresolution. , 2007, Optics letters.

[13]  Ching-Cherng Sun,et al.  Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. , 2003, Optics letters.

[14]  C. Sheppard,et al.  Gaussian-beam theory of lenses with annular aperture , 1978 .

[15]  M. Meier,et al.  Material processing with pulsed radially and azimuthally polarized laser radiation , 2007 .

[16]  Y. Lumer,et al.  Efficient extracavity generation of radially and azimuthally polarized beams. , 2007, Optics letters.

[17]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[18]  Pellegrini,et al.  A proposed dielectric-loaded resonant laser accelerator. , 1995, Physical review letters.

[19]  T. Wilson,et al.  Scanning two photon fluorescence microscopy with extended depth of field , 2006 .

[20]  Kathleen S. Youngworth,et al.  Focusing of high numerical aperture cylindrical-vector beams. , 2000, Optics express.

[21]  Colin J. R. Sheppard,et al.  Electromagnetic field in the focal region of an electric dipole wave , 1997 .

[22]  Colin J R Sheppard,et al.  Annular pupils, radial polarization, and superresolution. , 2004, Applied optics.

[23]  E. Wolf,et al.  Energy Flow in the Neighborhood of the Focus of a Coherent Beam , 1967 .

[24]  Postle,et al.  Longitudinal field components for laser beams in vacuum. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  S Saghafi,et al.  Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation. , 1999, Optics letters.

[26]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  T G Brown,et al.  Longitudinal field modes probed by single molecules. , 2001, Physical review letters.

[28]  C. Sheppard,et al.  High-aperture beams. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  M. Xiao Theoretical treatment for scattering scanning near-field optical microscopy , 1997 .

[30]  Bing Hao,et al.  Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. , 2007, Optics express.

[31]  F. Gan,et al.  High focal depth with a pure-phase apodizer. , 2001, Applied optics.

[32]  B. Luk’yanchuk,et al.  Anomalous light scattering by small particles. , 2006, Physical review letters.

[33]  J. T. Foley,et al.  On the wavefront spacing of focused, radially polarized beams. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Zdeněk Bouchal,et al.  Non-diffractive Vector Bessel Beams , 1995 .

[35]  Colin J. R. Sheppard,et al.  Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams , 2007 .

[36]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[37]  Wayne D. Kimura,et al.  Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing , 1990 .

[38]  C J Sheppard Binary optics and confocal imaging. , 1999, Optics letters.

[39]  Byoungho Lee,et al.  Vector field microscopic imaging of light , 2007 .

[40]  Colin J. R. Sheppard Synthesis of filters for specified axial properties , 1996 .

[41]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[42]  C. Sheppard Electromagnetic field in the focal region of wide-angular annular lens and mirror systems , 1978 .

[43]  Shunichi Sato,et al.  Radially polarized laser beam from a Nd:YAG laser cavity with a c-cut YVO4 crystal , 2007 .

[44]  Satoshi Kawata,et al.  Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy , 2004 .

[45]  Gerd Leuchs,et al.  The focus of light—linear polarization breaks the rotational symmetry of the focal spot , 2003, physics/0304001.

[46]  Min Gu,et al.  Focusing of doughnut laser beams by a high numerical-aperture objective in free space. , 2003, Optics express.

[47]  E. Wolf,et al.  New generalized Bessel-Gaussian beams. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  S. Hell,et al.  Z-polarized confocal microscopy. , 2001, Journal of biomedical optics.