Pathophysiology of Bone Metastases

[1]  H. Takayanagi,et al.  Osteocyte control of osteoclastogenesis. , 2013, Bone.

[2]  J. Manson,et al.  Prediagnosis biomarkers of insulin-like growth factor-1, insulin, and interleukin-6 dysregulation and multiple myeloma risk in the Multiple Myeloma Cohort Consortium. , 2012, Blood.

[3]  Serk In Park,et al.  The multifaceted actions of PTHrP in skeletal metastasis. , 2012, Future oncology.

[4]  G. Roodman Genes associate with abnormal bone cell activity in bone metastasis , 2012, Cancer and Metastasis Reviews.

[5]  R. Iozzo,et al.  Targeting heparanase for cancer therapy at the tumor-matrix interface. , 2012, Matrix biology : journal of the International Society for Matrix Biology.

[6]  L. Quarles,et al.  Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. , 2012, Experimental cell research.

[7]  J. Chirgwin The stem cell niche as a pharmaceutical target for prevention of skeletal metastases. , 2012, Anti-cancer agents in medicinal chemistry.

[8]  M. Piccart,et al.  Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. , 2012, The New England journal of medicine.

[9]  L. Xing,et al.  Src inhibitors in the treatment of metastatic bone disease: rationale and clinical data. , 2011, Clinical investigation.

[10]  T. Guise,et al.  Therapeutic strategies to target TGF-β in the treatment of bone metastases. , 2011, Current pharmaceutical biotechnology.

[11]  N. Sethi,et al.  Notch signalling in cancer progression and bone metastasis , 2011, British Journal of Cancer.

[12]  R. Faccio Immune regulation of the tumor/bone vicious cycle , 2011, Annals of the New York Academy of Sciences.

[13]  G. Roodman,et al.  Bone effects of cancer therapies: pros and cons , 2011, Current opinion in supportive and palliative care.

[14]  I. Fidler,et al.  The seed and soil hypothesis revisited—The role of tumor‐stroma interactions in metastasis to different organs , 2011, International journal of cancer.

[15]  J. Waxman,et al.  Bone metastasis in prostate cancer: emerging therapeutic strategies , 2011, Nature Reviews Clinical Oncology.

[16]  E. Evans,et al.  Breast tumors induced by N‐methyl‐N‐nitrosourea are damaging to bone strength, structure, and mineralization in the absence of metastasis in rats , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[17]  K. Pienta,et al.  Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. , 2011, The Journal of clinical investigation.

[18]  D. Lyden,et al.  The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. , 2011, Seminars in cancer biology.

[19]  A. Chatziioannou,et al.  Combined inhibition of the BMP pathway and the RANK-RANKL axis in a mixed lytic/blastic prostate cancer lesion. , 2011, Bone.

[20]  B. Barlogie,et al.  Consequences of Daily Administered Parathyroid Hormone on Myeloma Growth, Bone Disease, and Molecular Profiling of Whole Myelomatous Bone , 2010, PloS one.

[21]  J. Chirgwin,et al.  Hypoxia and TGF-β Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment , 2009, PloS one.

[22]  E. Vogler,et al.  A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. , 2009, Cancer research.

[23]  R. Sikes,et al.  Osteosclerotic prostate cancer metastasis to murine bone are enhanced with increased bone formation , 2009, Clinical & Experimental Metastasis.

[24]  J. Ramser,et al.  Identification of brain- and bone-specific breast cancer metastasis genes. , 2009, Cancer letters.

[25]  Jun Luo,et al.  Copy Number Analysis Indicates Monoclonal Origin of Lethal Metastatic Prostate Cancer , 2009, Nature Medicine.

[26]  J. Shaughnessy,et al.  The role of Dickkopf-1 in bone development, homeostasis, and disease. , 2009, Blood.

[27]  L. Neckers,et al.  Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone , 2008, Proceedings of the National Academy of Sciences.

[28]  K. Pienta,et al.  Annexin II/Annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer , 2008, Journal of cellular biochemistry.

[29]  D. Scadden,et al.  Evolving concepts on the microenvironmental niche for hematopoietic stem cells , 2008, Current opinion in hematology.

[30]  B. Williams,et al.  Wnt signaling and prostate cancer. , 2008, Current drug targets.

[31]  J. Chirgwin,et al.  Molecular biology of bone metastasis. , 2008, Molecular cancer therapeutics.

[32]  W. Dougall,et al.  RANK ligand as a therapeutic target for bone metastases and multiple myeloma. , 2008, Cancer treatment reviews.

[33]  E. Vazquez,et al.  Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone , 2008, Oncogene.

[34]  G. Roodman Treatment strategies for bone disease , 2007, Bone Marrow Transplantation.

[35]  F. Saad,et al.  A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone‐refractory prostate cancer , 2007, Cancer.

[36]  G. Mundy,et al.  Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease , 2007, British journal of haematology.

[37]  F. Saad,et al.  Pathologic fractures correlate with reduced survival in patients with malignant bone disease , 2007, Cancer.

[38]  R. Vessella,et al.  Tumor cell dormancy: An NCI workshop report , 2007, Cancer biology & therapy.

[39]  N. Munshi,et al.  Multiple myeloma: A prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment , 2007, Journal of cellular biochemistry.

[40]  K. Schulman,et al.  Economic burden of metastatic bone disease in the U.S. , 2007, Cancer.

[41]  Charles P. Lin,et al.  Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. , 2007, Blood.

[42]  O. Kollet,et al.  The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. , 2007, Annual review of immunology.

[43]  Bart Barlogie,et al.  Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. , 2007, Blood.

[44]  K. Mohammad,et al.  Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. , 2007, Cancer research.

[45]  O. Stephens,et al.  Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. , 2007, Molecular endocrinology.

[46]  E. Keller,et al.  The role of Wnts in bone metastases , 2007, Cancer and Metastasis Reviews.

[47]  J. Chirgwin,et al.  Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases , 2007, Cancer and Metastasis Reviews.

[48]  B. Komm,et al.  Wnt signaling and osteoblastogenesis , 2007, Reviews in Endocrine and Metabolic Disorders.

[49]  K. Miyazono,et al.  Ki26894, a novel transforming growth factor‐β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line , 2007, Cancer science.

[50]  P. L. Bergsagel,et al.  MIP-1alpha (CCL3) is a downstream target of FGFR3 and RAS-MAPK signaling in multiple myeloma. , 2006, Blood.

[51]  M. Dimopoulos,et al.  Serum concentrations of Dickkopf‐1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation , 2006, International journal of cancer.

[52]  D. Bikle,et al.  Role of IGF‐I Signaling in Regulating Osteoclastogenesis , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[53]  Xiu-fen Lei,et al.  Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. , 2006, Cancer research.

[54]  E. T. Gawlinski,et al.  Acid-mediated tumor invasion: a multidisciplinary study. , 2006, Cancer research.

[55]  P. Genever,et al.  Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκB ligand and inhibits osteoclastogenesis in vitro , 2006, Journal of Cell Science.

[56]  S. M. Sims,et al.  Regulation of cancer cell migration and bone metastasis by RANKL , 2006, Nature.

[57]  J. Chirgwin,et al.  Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. , 2005, Cancer research.

[58]  Toshio Matsumoto,et al.  Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. , 2005, Blood.

[59]  J. Chan,et al.  Bone Scintigraphy in Common Tumors With Osteolytic Components , 2005, Clinical nuclear medicine.

[60]  Wei He,et al.  Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Aaronson,et al.  Prostate cancer cells promote osteoblastic bone metastases through Wnts. , 2005, Cancer research.

[62]  S. Colla,et al.  IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. , 2005, Blood.

[63]  F. Saad,et al.  Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[64]  M. Waltham,et al.  The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. , 2005, Cancer research.

[65]  Hans Clevers,et al.  Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. , 2005, Developmental cell.

[66]  T. Guise,et al.  Breast Cancer Metastasis to Bone: Mechanisms of Osteolysis and Implications for Therapy , 2005, Journal of Mammary Gland Biology and Neoplasia.

[67]  R. Taichman Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. , 2005, Blood.

[68]  T. Yoneda,et al.  Crosstalk between cancer cells and bone microenvironment in bone metastasis. , 2005, Biochemical and biophysical research communications.

[69]  J. Westendorf,et al.  Wnt signaling in osteoblasts and bone diseases. , 2004, Gene.

[70]  K. Moriyama,et al.  Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. , 2004, Blood.

[71]  A. Giaccia,et al.  Hypoxic gene expression and metastasis , 2004, Cancer and Metastasis Reviews.

[72]  G. Roodman Mechanisms of bone metastasis. , 2004, Discovery medicine.

[73]  Toshio Matsumoto,et al.  Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)‐1α and MIP‐1β correlates with lytic bone lesions in patients with multiple myeloma , 2004, British journal of haematology.

[74]  N. Callander,et al.  And Growth of Myeloma Cells Il-3 Expression by Myeloma Cells Increases Both Osteoclast Formation , 2022 .

[75]  F. Zhan,et al.  The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. , 2003, The New England journal of medicine.

[76]  J. Chirgwin,et al.  A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Bataille,et al.  Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. , 2003, Blood.

[78]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[79]  David L. Lacey,et al.  Osteoclast differentiation and activation , 2003, Nature.

[80]  G. Roodman Role of stromal-derived cytokines and growth factors in bone metastasis. , 2003 .

[81]  K. Mohammad,et al.  Role of endothelin‐1 in osteoblastic bone metastases , 2003, Cancer.

[82]  G. Mundy Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities , 2002, Nature Reviews Cancer.

[83]  G. Karsenty,et al.  Transcription factors in bone: developmental and pathological aspects. , 2002, Trends in molecular medicine.

[84]  Paul J. Williams,et al.  Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. , 2002, Cancer research.

[85]  G. Roodman,et al.  Antisense inhibition of macrophage inflammatory protein 1-α blocks bone destruction in a model of myeloma bone disease , 2001 .

[86]  P. Richardson,et al.  Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications , 2001, Leukemia.

[87]  D. Joshua,et al.  Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. , 2001, Blood.

[88]  H. Datta,et al.  Scanning Electrochemical Microscopy at the Surface of Bone‐Resorbing Osteoclasts: Evidence for Steady‐State Disposal and Intracellular Functional Compartmentalization of Calcium , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[89]  S. Manolagas,et al.  Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. , 2001, The Journal of surgical research.

[90]  J. Drijfhout,et al.  Urokinase-receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo. , 2001, The American journal of pathology.

[91]  R. Coleman Metastatic bone disease: clinical features, pathophysiology and treatment strategies. , 2001, Cancer treatment reviews.

[92]  R. Coleman,et al.  The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. , 2001, Seminars in oncology.

[93]  B. Klein,et al.  Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. , 2000 .

[94]  D L Lacey,et al.  RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Apperley,et al.  Human myeloma cells promote the production of interleukin 6 by primary human osteoblasts , 2000, British journal of haematology.

[96]  W. Dalton,et al.  Integrin-Mediated Drug Resistance in Multiple Myeloma , 2000, Leukemia & lymphoma.

[97]  W. Dougall,et al.  RANK is essential for osteoclast and lymph node development. , 1999, Genes & development.

[98]  S. Nishikawa,et al.  Vascular Endothelial Growth Factor Can Substitute for Macrophage Colony-Stimulating Factor in the Support of Osteoclastic Bone Resorption , 1999, The Journal of experimental medicine.

[99]  N. Clarke,et al.  Scatter factor influences the formation of prostate epithelial cell colonies on bone marrow stroma in vitro , 1999, Clinical & Experimental Metastasis.

[100]  A. Angelucci,et al.  Osteoblast conditioned media contain TGF‐β1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components , 1999, International journal of cancer.

[101]  S. Morony,et al.  Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[102]  H. Yasuda,et al.  RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. , 1998, Biochemical and biophysical research communications.

[103]  E. Thompson,et al.  Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the αvβ3 and αvβ5 integrins , 1998 .

[104]  L. Hofbauer,et al.  Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. , 1998, European journal of endocrinology.

[105]  N. Udagawa,et al.  Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. , 1998, Biochemical and biophysical research communications.

[106]  S. Morony,et al.  osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. , 1998, Genes & development.

[107]  P. Croucher,et al.  Interleukin‐6 is expressed by plasma cells from patients with multiple myeloma and monoclonal gammopathy of undetermined significance , 1998, British journal of haematology.

[108]  D. Lacey,et al.  Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and Activation , 1998, Cell.

[109]  K Yano,et al.  Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[110]  R. Coleman Skeletal complications of malignancy , 1997, Cancer.

[111]  S. Mundlos,et al.  Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development , 1997, Cell.

[112]  Makoto Sato,et al.  Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts , 1997, Cell.

[113]  G Shimamoto,et al.  Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density , 1997, Cell.

[114]  R. Ziegler,et al.  Endothelin-1 Is a Potent Regulator of Human Bone Cell Metabolism In Vitro , 1997, Calcified Tissue International.

[115]  B F Boyce,et al.  Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. , 1996, The Journal of clinical investigation.

[116]  F. Craig,et al.  Development of an in vivo model of human multiple myeloma bone disease. , 1996, Blood.

[117]  J. Nelson,et al.  Identification of endothelin–1 in the pathophysiology of metastatic adenocarcinoma of the prostate , 1995, Nature Medicine.

[118]  M T Madsen,et al.  Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. , 1994, Blood.

[119]  E. Solary,et al.  Radioimmunoassay for the measurement of serum IL‐6 and its correlation with tumour cell mass parameters in multiple myeloma , 1992, American journal of hematology.

[120]  G. Mundy,et al.  Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[121]  R. Rubens,et al.  The clinical course of bone metastases from breast cancer. , 1987, British Journal of Cancer.

[122]  M. Klagsbrun,et al.  Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. , 1986, The Journal of biological chemistry.

[123]  M. Chapuy,et al.  Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma with special reference to osteomalacia , 1983, Cancer.

[124]  S Paget,et al.  THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. , 1889 .

[125]  G. van der Pluijm,et al.  Preclinical models that illuminate the bone metastasis cascade. , 2012, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[126]  G. David Roodman,et al.  Osteoblast function in myeloma. , 2011, Bone.

[127]  G. Stein,et al.  Metastatic bone disease: role of transcription factors and future targets. , 2011, Bone.

[128]  D. Santinia,et al.  New molecular targets in bone metastases , 2010 .

[129]  A. Jemal,et al.  Cancer Statistics, 2007 , 2007, CA: a cancer journal for clinicians.

[130]  T. Giordano,et al.  NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF , 2007, Nature Medicine.

[131]  J. Lieberman,et al.  Effects of the proteasome inhibitor bortezomib on osteolytic human prostate cancer cell metastases , 2005, Prostate Cancer and Prostatic Diseases.

[132]  L. True,et al.  Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases. , 2004, Cancer treatment and research.

[133]  R. Vessella,et al.  Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: The effect of bisphosphonate therapy on bone scintigraphy results , 2004, Clinical & Experimental Metastasis.

[134]  G. Roodman,et al.  Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. , 2001, Blood.

[135]  J. Chirgwin,et al.  Molecular mechanisms of tumor-bone interactions in osteolytic metastases. , 2000, Critical reviews in eukaryotic gene expression.

[136]  J. Aubin,et al.  Bone stem cells , 1998, Journal of cellular biochemistry.

[137]  G D Roodman,et al.  Interleukin 6. A potential autocrine/paracrine factor in Paget's disease of bone. , 1992, The Journal of clinical investigation.

[138]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[139]  J. Bingham Letter: Lower oesophageal sphincter. , 1974, Lancet.