Nanomaterials in the aquatic environment: toxicity, exposure and risk assessment

Het is nog onduidelijk hoe de milieurisicobeoordeling van nanomaterialen uitgevoerd moet worden en met welke nanospecieke stofeigenschappen daarbij rekening moet worden gehouden. Dit komt doordat nog weinig bekend is over de productie en het gebruik van deze materialen en de uiteindelijke effecten ervan op het ecosysteem. Nanomaterialen zijn materialen waarvan de afzonderlijke delen een of meerdere dimensies in de orde van 100 nm of minder hebben. Deze karakteristiek geeft nanomaterialen specifieke eigenschappen, dusdanig dat hun economisch en maatschappelijk belang op dit moment zeer snel toeneemt. Het zijn juist deze eigenschappen waardoor de risico's van nanomaterialen voor ecosystemen anders kunnen zijn dan die van reguliere (niet-nano) stoffen. Het Rijksinstituut voor Volksgezondheid en het Milieu (RIVM) stelt voor om bij het kwantificeren van effectieve blootstellingsconcentraties en effect niveau's van nanomaterialen rekening te houden met de specifieke eigenschappen van nanomaterialen en hun effecten, zoals vorm, grootte, en oppervlaktekarakteristieken , maar ook of nanodeeltjes samenklonteren tot grotere deeltjes afhankelijk van het type ontvangende water. Voor alle relevante vormen waarin het nanomateriaal voor kan komen in het milieu (het nanomateriaal zelf, samengeklonterde deeltjes, stoffen die vanuit het nanomateriaal in oplossing gaan, etcetera) moeten gegevens over blootstelling en effecten gegenereerd worden. Voor het identificeren en valideren van aanpassingen in modellen en testmethodieken is meer onderzoek nodig. Dit blijkt uit een literatuurstudie van het RIVM, aangevuld met algemene kennis over het gedrag en de effecten van nanomaterialen. Aanleiding voor het onderzoek zijn zorgen die in internationale studies zijn geuit over de mogelijke risico's van nanomaterialen. Daarnaast is het de vraag of de bestaande risicobeoordelingmethodieken die voor reguliere, goed oplosbare, chemische stoffen zijn ontwikkeld voldoende rekening houden met de specifieke eigenschappen van nanomaterialen.

[1]  Clive J Roberts,et al.  Quantifying the dimensions of nanoscale organic surface layers in natural waters. , 2007, Environmental science & technology.

[2]  C. Hirsch,et al.  C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. , 2009, Environmental pollution.

[3]  Damià Barceló,et al.  Ecotoxicity and analysis of nanomaterials in the aquatic environment , 2009, Analytical and bioanalytical chemistry.

[4]  Nancy D Denslow,et al.  Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). , 2007, Environmental science & technology.

[5]  Matthieu Paillet,et al.  [2+1] cycloaddition for cross-linking SWCNTs , 2004 .

[6]  Serge Stoll,et al.  A Generalized Description of Aquatic Colloidal Interactions: The Three-colloidal Component Approach , 1998 .

[7]  G. G. Leppard,et al.  Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results. , 1995, Environmental science & technology.

[8]  Oliver Wurl,et al.  A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. , 2004, Marine pollution bulletin.

[9]  G. G. Leppard,et al.  Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. , 1995, Environmental science & technology.

[10]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[11]  C. Reddy,et al.  Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment , 2008, Nanotechnology.

[12]  Pratim Biswas,et al.  Does nanoparticle activity depend upon size and crystal phase? , 2008, Nanotoxicology.

[13]  Jae-Hong Kim,et al.  Natural organic matter stabilizes carbon nanotubes in the aqueous phase. , 2007, Environmental science & technology.

[14]  Nikolay O. Mchedlov-Petrossyan,et al.  Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy , 1999 .

[15]  Baoshan Xing,et al.  Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. , 2009, Environmental pollution.

[16]  John C Crittenden,et al.  Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. , 2007, Chemosphere.

[17]  Heechul Choi,et al.  Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. , 2007, Environmental science & technology.

[18]  David M. Cwiertny,et al.  Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[19]  Jamie R Lead,et al.  Nanomaterials in the environment: Behavior, fate, bioavailability, and effects , 2008, Environmental toxicology and chemistry.

[20]  Jing Luo,et al.  Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms , 2008, Environmental toxicology and chemistry.

[21]  Karluss Thomas,et al.  Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[22]  M. Moore,et al.  Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? , 2006, Environment international.

[23]  C. Gagnon,et al.  Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. , 2008, Aquatic toxicology.

[24]  Nanna B. Hartmann,et al.  Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). , 2008, Aquatic toxicology.

[25]  V. Grassian,et al.  Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes , 2007 .

[26]  R. Handy,et al.  Transport of Solutes Across Biological Membranes in Eukaryotes: An Environmental Perspective , 2004 .

[27]  D. Sparks,et al.  Nanominerals, Mineral Nanoparticles, and Earth Systems , 2008, Science.

[28]  J. Israelachvili Intermolecular and surface forces , 1985 .

[29]  Richard D Handy,et al.  Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. , 2007, Aquatic toxicology.

[30]  Delina Y Lyon,et al.  Bacterial cell association and antimicrobial activity of a C60 water suspension , 2005, Environmental toxicology and chemistry.

[31]  E. Oberdörster Manufactured Nanomaterials (Fullerenes, C60) Induce Oxidative Stress in the Brain of Juvenile Largemouth Bass , 2004, Environmental health perspectives.

[32]  G. Sayler,et al.  Attributing Effects of Aqueous C60 Nano-Aggregates to Tetrahydrofuran Decomposition Products in Larval Zebrafish by Assessment of Gene Expression , 2007, Environmental health perspectives.

[33]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[34]  B. Nowack,et al.  Occurrence, behavior and effects of nanoparticles in the environment. , 2007, Environmental pollution.

[35]  Vicki H. Grassian,et al.  When Size Really Matters: Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide Nanoparticles in Gas and Liquid Phase Environments† , 2008 .

[36]  James F. Ranville,et al.  Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles , 2008, Ecotoxicology.

[37]  Kiril Hristovski,et al.  Stability of commercial metal oxide nanoparticles in water. , 2008, Water research.

[38]  Tsung-Che Chang,et al.  Efficient One-Flask Synthesis of Water-Soluble (60)Fullerenols. , 1996 .

[39]  Mark Crane,et al.  The ecotoxicology and chemistry of manufactured nanoparticles , 2008, Ecotoxicology.

[40]  Richard D Handy,et al.  Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. , 2007, Aquatic toxicology.

[41]  Jamie R. Lead,et al.  Aquatic Colloids and Nanoparticles: Current Knowledge and Future Trends , 2006 .

[42]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[43]  H. Lyklema 3 - Pair Interactions , 2005 .