Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement

We report a simple and effective interface engineering method for achieving highly efficient planar perovskite solar cells (PSCs) employing SnO2 electron selective layers (ESLs). Herein, a 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) was used to modify the SnO2 ESL/perovskite layer interface. This APTES SAM demonstrates multiple functions: (1) it can increase the surface energy and enhance the affinity of the SnO2 ESL, which induce the formation of high quality perovskite films with a better morphology and enhanced crystallinity. (2) Its terminal functional groups form dipoles on the SnO2 surface, leading to a decreased work function of SnO2 and enlarged built-in potential of SnO2/perovskite heterojunctions. (3) The terminal groups can passivate the trap states at the perovskite surface via hydrogen bonding. (4) The thin insulating layer at the interface can hinder electron back transfer and reduce the recombination process at the interface effectively. With these desirable properties, the best-performing cell employing a APTES SAM modified-SnO2 ESL achieved a PCE over 18% and a steady-state efficiency of 17.54%. Impressively, to the best of our knowledge, the obtained VOC of 1.16 V is the highest value reported for the CH3NH3PbI3 (MAPbI3) system. Our results suggest that the ESL/perovskite interface engineering with a APTES SAM is a promising method for fabricating efficient and hysteresis-less PSCs.

[1]  F. Liu,et al.  Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1β secretion , 2018, Nature Communications.

[2]  Zhenhua Yu,et al.  Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells , 2016 .

[3]  D. Mitzi,et al.  Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells , 2016, Advanced materials.

[4]  M. Li,et al.  Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. , 2016, ACS nano.

[5]  K. Wong,et al.  Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance , 2016 .

[6]  U. Jeng,et al.  Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles , 2016 .

[7]  Fuzhi Huang,et al.  Solvent‐Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16% , 2016 .

[8]  A study of the impact of co-adsorbents on DSSC electron transfer processes: anti-π-stacking vs. shield effect. , 2016, Physical chemistry chemical physics : PCCP.

[9]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[10]  Guojia Fang,et al.  Recent progress in electron transport layers for efficient perovskite solar cells , 2016 .

[11]  Mingkui Wang,et al.  Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells , 2016 .

[12]  Xiao-Fang Jiang,et al.  Improving Film Formation and Photovoltage of Highly Efficient Inverted‐Type Perovskite Solar Cells through the Incorporation of New Polymeric Hole Selective Layers , 2016 .

[13]  Henry J. Snaith,et al.  Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification , 2016 .

[14]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[15]  Tae‐Woo Lee,et al.  Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers , 2016 .

[16]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[17]  M. Halik,et al.  Low‐Temperature and Hysteresis‐Free Electron‐Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells , 2015 .

[18]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[19]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[20]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[21]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[22]  Q. Gong,et al.  Morphology control of the perovskite films for efficient solar cells. , 2015, Dalton transactions.

[23]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[24]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[25]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[26]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[27]  C. Brabec,et al.  A Universal Interface Layer Based on an Amine‐Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells , 2015 .

[28]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[29]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[30]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[31]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[32]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[33]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[34]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[35]  J. Bisquert,et al.  Electrical field profile and doping in planar lead halide perovskite solar cells , 2014 .

[36]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[37]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[38]  T. Ma,et al.  All-Solid Perovskite Solar Cells with HOCO-R-NH3+I– Anchor-Group Inserted between Porous Titania and Perovskite , 2014 .

[39]  Konrad Wojciechowski,et al.  Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. , 2014, Nano letters.

[40]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[41]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[42]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[43]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[44]  M. Hersam,et al.  Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization. , 2013, Physical chemistry chemical physics : PCCP.

[45]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[46]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[47]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[48]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[49]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[50]  J. Park,et al.  Enhanced Performance in Polymer Solar Cells by Surface Energy Control , 2010 .

[51]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .