Tractability frontiers in probabilistic team semantics and existential second-order logic over the reals

Probabilistic team semantics is a framework for logical analysis of probabilistic dependencies. Our focus is on the axiomatizability, complexity, and expressivity of probabilistic inclusion logic and its extensions. We identify a natural fragment of existential second-order logic with additive real arithmetic that captures exactly the expressivity of probabilistic inclusion logic. We furthermore relate these formalisms to linear programming, and doing so obtain PTIME data complexity for the logics. Moreover, on finite structures, we show that the full existential second-order logic with additive real arithmetic can only express NP properties. Lastly, we present a sound and complete axiomatization for probabilistic inclusion logic at the atomic level.

[1]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[2]  Klaus Meer Counting problems over the reals , 2000, Theor. Comput. Sci..

[3]  Michael Benedikt,et al.  Reachability and connectivity queries in constraint databases , 2000, J. Comput. Syst. Sci..

[4]  Erich Grädel,et al.  Logics with Multiteam Semantics , 2020, ArXiv.

[5]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[6]  Klaus Meer,et al.  Two logical hierarchies of optimization problems over the real numbers , 2006, Math. Log. Q..

[7]  Marcus Schaefer,et al.  Realizability of Graphs and Linkages , 2013 .

[8]  Gabriel M. Kuper,et al.  Constraint Query Languages , 1995, J. Comput. Syst. Sci..

[9]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[10]  Floris Geerts,et al.  Constraint Query Languages , 2008, Encyclopedia of GIS.

[11]  Stephan Kreutzer Fixed-point query languages for linear constraint databases , 2000, PODS '00.

[12]  J. Pach Thirty essays on geometric graph theory , 2013 .

[13]  Marcus Schaefer,et al.  Fixed Points, Nash Equilibria, and the Existential Theory of the Reals , 2017, Theory of Computing Systems.

[14]  Felipe Cucker,et al.  Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets , 2006, J. Complex..

[15]  The Art Gallery Problem is ∃ℝ-complete , 2021, J. ACM.

[16]  Juha Kontinen,et al.  Team Logic and Second-Order Logic , 2011, Fundam. Informaticae.

[17]  Lukasz Kaiser,et al.  Machine Learning with Guarantees using Descriptive Complexity and SMT Solvers , 2016, ArXiv.

[18]  Erich Grädel,et al.  Unifying Hidden-Variable Problems from Quantum Mechanics by Logics of Dependence and Independence , 2021, Ann. Pure Appl. Log..

[19]  Yuri Gurevich,et al.  Metafinite Model Theory , 1994, LCC.

[20]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[21]  Arne Meier,et al.  Approximation and dependence via multiteam semantics , 2015, Annals of Mathematics and Artificial Intelligence.

[22]  Lauri Hella,et al.  Inclusion Logic and Fixed Point Logic , 2013, CSL.

[23]  Dan Geiger,et al.  Axioms and Algorithms for Inferences Involving Probabilistic Independence , 1991, Inf. Comput..

[24]  Gianluca Paolini,et al.  A logic for arguing about probabilities in measure teams , 2017, Arch. Math. Log..

[25]  Pietro Galliani,et al.  Game values and equilibria for undetermined sentences of Dependence Logic , 2008 .

[26]  Jonni Virtema,et al.  Facets of Distribution Identities in Probabilistic Team Semantics , 2019, JELIA.

[27]  Klaus Meer,et al.  Descriptive complexity theory over the real numbers , 1995, STOC '95.

[28]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[29]  Yuri Gurevich,et al.  Metafinite Model Theory , 1994, Inf. Comput..

[30]  Leonid Libkin,et al.  Queries with Arithmetic on Incomplete Databases , 2020, PODS.

[31]  Juha Kontinen,et al.  On Definability in Dependence Logic , 2009, J. Log. Lang. Inf..

[32]  Samson Abramsky,et al.  Team Semantics and Independence Notions in Quantum Physics , 2021 .

[33]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[34]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[35]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[36]  Klaus Meer,et al.  Logics Which Capture Complexity Classes Over The Reals , 1999, J. Symb. Log..

[37]  Arne Meier,et al.  Probabilistic team semantics , 2018, FoIKS.

[38]  Klaus Meer,et al.  Two logical hierarchies of optimization problems over the real numbers , 2005, Math. Log. Q..

[39]  Ronald Fagin,et al.  Inclusion dependencies and their interaction with functional dependencies , 1982, PODS.

[40]  Nicole Schweikardt,et al.  Learning Concepts Described by Weight Aggregation Logic , 2021, CSL.

[41]  Marcus Schaefer,et al.  Complexity of Some Geometric and Topological Problems , 2009, GD.

[42]  Michael Benedikt,et al.  Reachability and connectivity queries in constraint databases , 2003, J. Comput. Syst. Sci..

[43]  Klaus Meer,et al.  Logics which capture complexity classes over the reals , 1999 .

[44]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[45]  Martin Grohe,et al.  Learning first-order definable concepts over structures of small degree , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[46]  Jonni Virtema,et al.  Descriptive complexity of real computation and probabilistic independence logic , 2020, LICS.

[47]  Pascal Koiran Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..

[48]  Stephan Kreutzer,et al.  Descriptive Complexity Theory for Constraint Databases , 1999, CSL.

[49]  Felipe Cucker,et al.  Counting complexity classes for numeric computations II: algebraic and semialgebraic sets , 2003, STOC '04.

[50]  Pietro Galliani,et al.  On Dependence Logic , 2013, Johan van Benthem on Logic and Information Dynamics.