DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS
暂无分享,去创建一个
[1] N. Wiener. The Homogeneous Chaos , 1938 .
[2] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[3] D. Cox,et al. An Analysis of Transformations , 1964 .
[4] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[5] R. Rackwitz,et al. Structural reliability under combined random load sequences , 1978 .
[6] I. Simpson. Numerical integration over a semi-infinite interval, using the lognormal distribution , 1978 .
[7] N. Lind,et al. Fast probability integration by three-parameter normal tail approximation , 1982 .
[8] A. Kiureghian,et al. STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .
[9] Yih‐Tsuen Wu,et al. New Algorithm for Structural Reliability Estimation , 1987 .
[10] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[11] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[12] Menner A Tatang,et al. Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .
[13] Rüdiger Rackwitz,et al. Two basic problems in reliability-based structural optimization , 1997, Math. Methods Oper. Res..
[14] Oddvar O. Bendiksen,et al. Structures, Structural Dynamics and Materials Conference , 1998 .
[15] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[16] R. Sues,et al. Reliability-Based Multi-Discipli nary Optimization for Aerospace Systems , 2001 .
[17] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[18] Y.-T. Wu,et al. Safety-Factor Based Approach for Probability-Based Design Optimization , 2001 .
[19] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[20] Xiaoping Du,et al. Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.
[21] R. Walters. Stochastic Fluid Mechanics via Polynomial Chaos , 2003 .
[22] Michael S. Eldred,et al. Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .
[23] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[24] J. E. Renaud,et al. Investigation of reliability method formulations in DAKOTA/UQ , 2004 .
[25] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[26] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[27] P. Frauenfelder,et al. Finite elements for elliptic problems with stochastic coefficients , 2005 .
[28] Ratan Jha,et al. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , 2006 .
[29] Sophia Lefantzi,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .
[30] Jeroen A. S. Witteveen,et al. Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .
[31] Daniel M. Dunlavy,et al. Formulations for Surrogate-Based Optimization with Data Fit, Multifidelity, and Reduced-Order Models , 2006 .
[32] M. Eldred,et al. Second-Order Reliability Formulations in DAKOTA/UQ , 2006 .
[33] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[34] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[35] Erik Lund,et al. Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference , 2008 .
[36] D. Xiu. Numerical integration formulas of degree two , 2008 .
[37] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[38] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[39] M. Eldred,et al. Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos. , 2008 .
[40] M. Eldred,et al. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .
[41] David F. Gleich,et al. Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..
[42] Michael S. Eldred,et al. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .
[43] M. Eldred,et al. Towards Goal-Oriented Stochastic Design Employing Adaptive Collocation Methods , 2010 .
[44] Gary Tang,et al. Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation , 2011, Reliab. Eng. Syst. Saf..
[45] John Burkardt,et al. The “ Combining Coefficient ” for Anisotropic Sparse Grids , 2012 .