DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS

Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampling, linear regression, tensor-product quadrature, or Smolyak sparse grid approaches. SC, on the other hand, forms interpolation functions for known coefficients, and requires the use of structured collocation point sets derived from tensor product or sparse grids. When tailoring the basis functions or interpolation grids to match the forms of the input uncertainties, exponential convergence rates can be achieved with both techniques for general probabilistic analysis problems. Once PCE or SC representations have been obtained for a response metric of interest, analytic expressions can be derived for the moments of the expansion and for the design derivatives of these moments, allowing for efficient design under uncertainty formulations involving moment control (e.g., robust design). This paper presents two approaches for moment design sensitivities, one involving response function expansions over both design and uncertain variables and one involving response derivative expansions over only the uncertain variables. These approaches present a trade-off between increased dimensionality in the expansions (and therefore increased simulation runs required to construct them) with global expansion validity versus increased data requirements per simulation with local expansion validity. Given this capability for analytic moments and their sensitivities, we explore bilevel, sequential, and multifidelity formulations for OUU. Initial experiences with these approaches is presented for a number of benchmark test problems.

[1]  N. Wiener The Homogeneous Chaos , 1938 .

[2]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[3]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[4]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[5]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[6]  I. Simpson Numerical integration over a semi-infinite interval, using the lognormal distribution , 1978 .

[7]  N. Lind,et al.  Fast probability integration by three-parameter normal tail approximation , 1982 .

[8]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[9]  Yih‐Tsuen Wu,et al.  New Algorithm for Structural Reliability Estimation , 1987 .

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[12]  Menner A Tatang,et al.  Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .

[13]  Rüdiger Rackwitz,et al.  Two basic problems in reliability-based structural optimization , 1997, Math. Methods Oper. Res..

[14]  Oddvar O. Bendiksen,et al.  Structures, Structural Dynamics and Materials Conference , 1998 .

[15]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[16]  R. Sues,et al.  Reliability-Based Multi-Discipli nary Optimization for Aerospace Systems , 2001 .

[17]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[18]  Y.-T. Wu,et al.  Safety-Factor Based Approach for Probability-Based Design Optimization , 2001 .

[19]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[20]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[21]  R. Walters Stochastic Fluid Mechanics via Polynomial Chaos , 2003 .

[22]  Michael S. Eldred,et al.  Second-Order Corrections for Surrogate-Based Optimization with Model Hierarchies , 2004 .

[23]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[24]  J. E. Renaud,et al.  Investigation of reliability method formulations in DAKOTA/UQ , 2004 .

[25]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[26]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[27]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[28]  Ratan Jha,et al.  47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , 2006 .

[29]  Sophia Lefantzi,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. , 2011 .

[30]  Jeroen A. S. Witteveen,et al.  Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos , 2006 .

[31]  Daniel M. Dunlavy,et al.  Formulations for Surrogate-Based Optimization with Data Fit, Multifidelity, and Reduced-Order Models , 2006 .

[32]  M. Eldred,et al.  Second-Order Reliability Formulations in DAKOTA/UQ , 2006 .

[33]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[34]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[35]  Erik Lund,et al.  Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference , 2008 .

[36]  D. Xiu Numerical integration formulas of degree two , 2008 .

[37]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[38]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[39]  M. Eldred,et al.  Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos. , 2008 .

[40]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[41]  David F. Gleich,et al.  Spectral Methods for Parameterized Matrix Equations , 2009, SIAM J. Matrix Anal. Appl..

[42]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[43]  M. Eldred,et al.  Towards Goal-Oriented Stochastic Design Employing Adaptive Collocation Methods , 2010 .

[44]  Gary Tang,et al.  Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation , 2011, Reliab. Eng. Syst. Saf..

[45]  John Burkardt,et al.  The “ Combining Coefficient ” for Anisotropic Sparse Grids , 2012 .