Lindig's Algorithm for Concept Lattices over Graded Attributes

Formal concept analysis (FCA) is a method of exploratory data analysis. The data is in the form of a table describing relationship between objects (rows) and attributes (columns), where table entries are grades representing degrees to which objects have attributes. The main output of FCA is a hierarchical structure (so-called concept lattice) of conceptual clusters (so-called formal concepts) present in the data. This paper focuses on algorithmic aspects of FCA of data with graded attributes. Namely, we focus on the problem of generating efficiently all clusters present in the data together with their subconcept-superconcept hierarchy. We present theoretical foundations, the algorithm, analysis of its efficiency, and comparison with other algorithms.

[1]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[2]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[3]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[4]  Bernhard Ganter,et al.  Formal Concept Analysis, 6th International Conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008, Proceedings , 2008, International Conference on Formal Concept Analysis.

[5]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[6]  Lotfi A. Zadeh,et al.  Fuzzy Logic , 2009, Encyclopedia of Complexity and Systems Science.

[7]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[8]  Christian Lindig Fast Concept Analysis , 2000 .

[9]  G. Grätzer General Lattice Theory , 1978 .

[10]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[11]  Claudio Carpineto,et al.  Concept data analysis - theory and applications , 2004 .

[12]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[13]  Bernhard Ganter,et al.  Conceptual Structures: Logical, Linguistic, and Computational Issues , 2000, Lecture Notes in Computer Science.

[14]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[15]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[16]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[17]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[18]  Mohammed J. Zaki Mining Non-Redundant Association Rules , 2004, Data Min. Knowl. Discov..

[19]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[20]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[21]  U. Höhle On the Fundamentals of Fuzzy Set Theory , 1996 .

[22]  R. Belohlávek,et al.  Algorithms for fuzzy concept lattices , 2002 .

[23]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[24]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[25]  Vilem Vychodil,et al.  Reducing the size of fuzzy concept lattices by fuzzy closure operators , 2006 .