The Role of Neutrophilic Granulocytes in Philadelphia Chromosome Negative Myeloproliferative Neoplasms

Philadelphia chromosome negative myeloproliferative neoplasms (MPN) are composed of polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The clinical picture is determined by constitutional symptoms and complications, including arterial and venous thromboembolic or hemorrhagic events. MPNs are characterized by mutations in JAK2, MPL, or CALR, with additional mutations leading to an expansion of myeloid cell lineages and, in PMF, to marrow fibrosis and cytopenias. Chronic inflammation impacting the initiation and expansion of disease in a major way has been described. Neutrophilic granulocytes play a major role in the pathogenesis of thromboembolic events via the secretion of inflammatory markers, as well as via interaction with thrombocytes and the endothelium. In this review, we discuss the molecular biology underlying myeloproliferative neoplasms and point out the central role of leukocytosis and, specifically, neutrophilic granulocytes in this group of disorders.

[1]  R. Teruel-Montoya,et al.  Emerging Role of Neutrophils in the Thrombosis of Chronic Myeloproliferative Neoplasms , 2021, International journal of molecular sciences.

[2]  T. Barbui,et al.  Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. , 2021, The Lancet. Haematology.

[3]  S. Verstovsek,et al.  Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. , 2020, Blood advances.

[4]  A. Tefferi,et al.  Primary myelofibrosis: 2021 update on diagnosis, risk‐stratification and management , 2020, American journal of hematology.

[5]  G. Li Volti,et al.  The Role of Inflammation and Inflammasome in Myeloproliferative Disease , 2020, Journal of clinical medicine.

[6]  G. Hobbs,et al.  Use of Interferon Alfa in the Treatment of Myeloproliferative Neoplasms: Perspectives and Review of the Literature , 2020, Cancers.

[7]  N. Komatsu,et al.  Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin , 2020, Cancer science.

[8]  R. Levine,et al.  Secondary leukemia to myeloproliferative neoplasms. , 2020, Blood.

[9]  Yini Wang,et al.  Ruxolitinib for refractory/relapsed hemophagocytic lymphohistiocytosis , 2020, Haematologica.

[10]  M. Mohty,et al.  Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. , 2020, The New England journal of medicine.

[11]  H. Kantarjian,et al.  Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring , 2020, American journal of hematology.

[12]  M. Arbushites,et al.  Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label, phase 2 trial. , 2020, Blood.

[13]  S. Verstovsek,et al.  Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: An updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure , 2020, American journal of hematology.

[14]  R. Greil,et al.  Ropeginterferon alfa-2b for the treatment of patients with polycythemia vera. , 2020, Drugs of today.

[15]  K. Krejcy,et al.  Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. , 2020, The Lancet. Haematology.

[16]  P. Nigrovic,et al.  Megakaryocyte emperipolesis: a new frontier in cell-in-cell interaction , 2019, Platelets.

[17]  L. Bullinger,et al.  Single-cell analysis based dissection of clonality in myelofibrosis , 2019, Nature Communications.

[18]  Michael Schieber,et al.  Myelofibrosis in 2019: moving beyond JAK2 inhibition , 2019, Blood Cancer Journal.

[19]  F. Heidel,et al.  Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation , 2019, Cells.

[20]  R. Murphy,et al.  Review of primary and secondary erythromelalgia , 2019, Clinical and experimental dermatology.

[21]  B. Engelmann,et al.  Platelet–Neutrophil Crosstalk in Atherothrombosis , 2019, Thrombosis and Haemostasis.

[22]  P. Heller,et al.  Platelets as Mediators of Thromboinflammation in Chronic Myeloproliferative Neoplasms , 2019, Front. Immunol..

[23]  T. Barbui,et al.  Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: a systematic review and meta-analysis. , 2019, Blood advances.

[24]  C. James,et al.  High circulating levels of MPO-DNA are associated with thrombosis in patients with MPN , 2019, Leukemia.

[25]  U. Gianelli,et al.  Blast Transformation in Myeloproliferative Neoplasms: Risk Factors, Biological Findings, and Targeted Therapeutic Options , 2019, International journal of molecular sciences.

[26]  S. D. De Meyer,et al.  Neutrophil Extracellular Traps in Arterial and Venous Thrombosis , 2019, Seminars in Thrombosis and Hemostasis.

[27]  S. Verstovsek,et al.  Updates in the management of polycythemia vera and essential thrombocythemia , 2019, Therapeutic advances in hematology.

[28]  A. Weyrich,et al.  Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets , 2018, bioRxiv.

[29]  K. Mills,et al.  The ruxolitinib effect: understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms , 2018, Journal of Translational Medicine.

[30]  T. Barbui,et al.  Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk‐stratification and management , 2018, American journal of hematology.

[31]  A. Tall,et al.  Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in Jak2V617F Mice , 2018, Circulation research.

[32]  A. Tefferi Primary myelofibrosis: 2019 update on diagnosis, risk‐stratification and management , 2018, American journal of hematology.

[33]  John M. Grosel,et al.  Acute portal vein thrombosis in a 59-year-old male with JAK2 V617F mutation☆ , 2018, Radiology case reports.

[34]  B. Bauvois,et al.  Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? , 2018, Cancers.

[35]  H. Amthauer,et al.  JAK2-V617F promotes venous thrombosis through &bgr;1/&bgr;2 integrin activation , 2018, The Journal of clinical investigation.

[36]  S. Verstovsek,et al.  Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis: A Randomized Clinical Trial , 2018, JAMA oncology.

[37]  S. Mccarroll,et al.  Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms , 2018, Science Translational Medicine.

[38]  T. Barbui,et al.  The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion , 2018, Blood Cancer Journal.

[39]  A. Green,et al.  Myeloproliferative neoplasms: from origins to outcomes. , 2017, Blood.

[40]  F. Lussana,et al.  Inflammation and myeloproliferative neoplasms. , 2017, Journal of autoimmunity.

[41]  V. Papayannopoulos Neutrophil extracellular traps in immunity and disease , 2017, Nature Reviews Immunology.

[42]  R. Mesa,et al.  SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor-Naïve Patients With Myelofibrosis. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  R. Gale,et al.  Primary myelofibrosis: Older age and high JAK2V617F allele burden are associated with elevated plasma high-sensitivity C-reactive protein levels and a phenotype of progressive disease. , 2017, Leukemia research.

[44]  S. Verstovsek,et al.  JAK2 inhibitors for myeloproliferative neoplasms: what is next? , 2017, Blood.

[45]  Z. Shun,et al.  Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. , 2017, The Lancet. Haematology.

[46]  J. Chi,et al.  JAK2 V617F hematopoietic clones are present several years prior to MPN diagnosis and follow different expansion kinetics. , 2017, Blood advances.

[47]  A. Mead,et al.  Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. , 2017, The Lancet. Haematology.

[48]  A. Mead,et al.  Myeloproliferative neoplasm stem cells. , 2017, Blood.

[49]  P. Kubes,et al.  An emerging role for neutrophil extracellular traps in noninfectious disease , 2017, Nature Medicine.

[50]  B. Schraven,et al.  JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1 , 2017, Leukemia.

[51]  M. Schattner,et al.  Neutrophil extracellular trap formation and circulating nucleosomes in patients with chronic myeloproliferative neoplasms , 2016, Scientific Reports.

[52]  P. Guglielmelli,et al.  Targeted deep sequencing in polycythemia vera and essential thrombocythemia. , 2016, Blood advances.

[53]  G. Martinelli,et al.  Crucial factors of the inflammatory microenvironment (IL-1β/TNF-α/TIMP-1) promote the maintenance of the malignant hemopoietic clone of myelofibrosis: an in vitro study , 2016, Oncotarget.

[54]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[55]  A. Tefferi,et al.  Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: a literature review of incidence and risk factors , 2015, Blood Cancer Journal.

[56]  F. Fend,et al.  Neutrophilic leukocytosis in advanced stage polycythemia vera: hematopathologic features and prognostic implications , 2015, Modern Pathology.

[57]  H. Hasselbalch,et al.  MPNs as Inflammatory Diseases: The Evidence, Consequences, and Perspectives , 2015, Mediators of inflammation.

[58]  Daniel B. Aruch,et al.  Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. , 2015, Blood.

[59]  K. McCoy,et al.  IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. , 2015, The Journal of clinical investigation.

[60]  A. Tefferi,et al.  Myeloproliferative Neoplasms: A Contemporary Review. , 2015, JAMA oncology.

[61]  Paola Guglielmelli,et al.  Effect of mutation order on myeloproliferative neoplasms. , 2015, The New England journal of medicine.

[62]  M. Griesshammer,et al.  Ruxolitinib versus standard therapy for the treatment of polycythemia vera. , 2015, The New England journal of medicine.

[63]  Jonathan J. Chen,et al.  JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. , 2015, Cancer discovery.

[64]  K. Kaushansky,et al.  The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. , 2014, Blood.

[65]  S. Akira,et al.  JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. , 2014, Blood.

[66]  S. Orkin,et al.  Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F , 2014, The Journal of experimental medicine.

[67]  D. Kent,et al.  Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. , 2014, Experimental hematology.

[68]  M. Jensen,et al.  Circulating YKL‐40 in myelofibrosis a potential novel biomarker of disease activity and the inflammatory state , 2014, European journal of haematology.

[69]  E. Ejerblad,et al.  Circulating YKL-40 in patients with essential thrombocythemia and polycythemia vera treated with the novel histone deacetylase inhibitor vorinostat. , 2014, Leukemia research.

[70]  D. Lai,et al.  Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms , 2014, Nature.

[71]  M. Cazzola,et al.  JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. , 2014, Blood.

[72]  H. Hasselbalch A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis? , 2014, Leukemia research.

[73]  A Caflisch,et al.  Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348) , 2014, Leukemia.

[74]  F. Passamonti,et al.  CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons , 2014, Leukemia.

[75]  R. Levine,et al.  Genetics of Myeloproliferative Neoplasms , 2014, Cancer journal.

[76]  J. D. Fitzpatrick,et al.  Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. , 2013, The New England journal of medicine.

[77]  T. Barbui,et al.  Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. , 2013, Blood.

[78]  Nicole C. C. Them,et al.  Genetic Basis of MPN: Beyond JAK2-V617F , 2013, Current Hematologic Malignancy Reports.

[79]  P. Petrides,et al.  Aquagenic pruritus in polycythemia vera: Characteristics and influence on quality of life in 441 patients , 2013, American journal of hematology.

[80]  T. Barbui,et al.  Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis , 2013, Leukemia.

[81]  H. Pahl,et al.  Transcription factor nuclear factor erythroid-2 mediates expression of the cytokine interleukin 8, a known predictor of inferior outcome in patients with myeloproliferative neoplasms , 2013, Haematologica.

[82]  M. Cazzola,et al.  Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study , 2013, Leukemia.

[83]  R. Kralovics,et al.  Molecular basis and clonal evolution of myeloproliferative neoplasms , 2013, Clinical chemistry and laboratory medicine.

[84]  R. Kralovics,et al.  Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. , 2013, Blood.

[85]  H. Hasselbalch Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? , 2013, Leukemia research.

[86]  T. Barbui,et al.  Cardiovascular events and intensity of treatment in polycythemia vera. , 2013, The New England journal of medicine.

[87]  V. Jooste,et al.  Leucocytosis and thrombosis at diagnosis are associated with poor survival in polycythaemia vera: a population‐based study of 327 patients , 2013, British journal of haematology.

[88]  P. Campbell,et al.  Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of the prospective PT1 cohort. , 2012, Blood.

[89]  B. Ebert,et al.  Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera. , 2012, Blood.

[90]  G. Finazzi How to manage essential thrombocythemia , 2012, Leukemia.

[91]  H. Hasselbalch,et al.  Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? , 2012, Blood.

[92]  Jason Gotlib,et al.  A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. , 2012, The New England journal of medicine.

[93]  T. Barbui,et al.  JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. , 2012, The New England journal of medicine.

[94]  Angela G. Fleischman,et al.  TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. , 2011, Blood.

[95]  T. Barbui,et al.  The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. , 2011, Blood.

[96]  J. Mulloy,et al.  The Thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis , 2011, Journal of cellular biochemistry.

[97]  Z. Estrov,et al.  Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor. , 2011, Cancer research.

[98]  D. Kent,et al.  Mouse models of myeloproliferative neoplasms: JAK of all grades , 2011, Disease Models & Mechanisms.

[99]  A. Tefferi,et al.  Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[100]  M. Boissinot,et al.  Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F , 2011, Oncogene.

[101]  T. Barbui,et al.  Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3 , 2011, Haematologica.

[102]  A. Allegra,et al.  Increased serum levels of neutrophil gelatinase-associated lipocalin in patients with essential thrombocythemia and polycythemia vera , 2011, Leukemia & lymphoma.

[103]  B. Bellosillo,et al.  Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. , 2010, Blood.

[104]  A. Martínez-Trillos,et al.  Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: results in 40 patients , 2010, Annals of Hematology.

[105]  H. Pahl,et al.  AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. , 2009, Blood.

[106]  M. Konopleva,et al.  Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[107]  S. Adams,et al.  Gene and microRNA analysis of neutrophils from patients with polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and -133a , 2009, Journal of Translational Medicine.

[108]  S. Chevret,et al.  Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. , 2008, Blood.

[109]  N. Villamor,et al.  Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis , 2008, Annals of Hematology.

[110]  M. Møller,et al.  The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis – impact on disease phenotype , 2007, European journal of haematology.

[111]  M. Stratton,et al.  JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. , 2007, The New England journal of medicine.

[112]  G. Tiscia,et al.  The JAK2 V617F mutation frequently occurs in patients with portal and mesenteric venous thrombosis , 2007, Journal of thrombosis and haemostasis : JTH.

[113]  M. Cazzola,et al.  Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. , 2006, Blood.

[114]  M. Boissinot,et al.  Erythropoietin-independent erythroid colony formation by bone marrow progenitors exposed to interleukin-11 and interleukin-8. , 2005, Experimental hematology.

[115]  T. Barbui,et al.  Pathogenesis of thrombosis in essential thrombocythemia and polycythemia vera: the role of neutrophils. , 2005, Seminars in hematology.

[116]  J. D. van der Walt,et al.  Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. , 2005, The New England journal of medicine.

[117]  T. Barbui,et al.  Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. , 2005, Experimental hematology.

[118]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[119]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[120]  T. Maiwald,et al.  Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF‐E2 , 2005, British journal of haematology.

[121]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[122]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[123]  M. Le Bousse-Kerdilès,et al.  IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis. , 2005, Blood.

[124]  A. Migliaccio,et al.  Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. , 2004, Blood.

[125]  R. Landolfi,et al.  Efficacy and safety of low-dose aspirin in polycythemia vera , 2004 .

[126]  E. Lippert,et al.  Abnormal production of interleukin (IL)-11 and IL-8 in polycythaemia vera. , 2002, Cytokine.

[127]  C. Burgaleta,et al.  Increased CD11/CD18 Expression and Altered Metabolic Activity on Polymorphonuclear Leukocytes from Patients with Polycythemia vera and Essential Thrombocythemia , 2002, Acta Haematologica.

[128]  F. Wendling,et al.  Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis. , 2000, Blood.

[129]  R. Willemze,et al.  Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. , 1995, Blood.

[130]  F. Ambrogi,et al.  Neutrophil functions in essential thrombocythemia. , 1993, Hematologic pathology.

[131]  D. Buss,et al.  The frequency and significance of megakaryocytic emperipolesis in myeloproliferative and reactive states , 1992, Annals of Hematology.

[132]  S. Schwartz Myeloproliferative Disorders , 1975, Annals of surgery.

[133]  S. Verstovsek,et al.  Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. , 2018, The Lancet. Haematology.

[134]  M. Griesshammer,et al.  Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. , 2017, The Lancet. Oncology.

[135]  T. Barbui,et al.  Preview : Published ahead of advance online publication Myeloproliferative neoplasms and inflammation : Whether to target the malignant clone or the inflammatory process or both , 2016 .

[136]  C. Creighton,et al.  Bone Marrow Stroma – Secreted Cytokines Protect JAK2 V617F -Mutated Cells from the Effects of a JAK2 Inhibitor , 2011 .

[137]  W. Vainchenker,et al.  Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. , 2007, Blood.

[138]  N. Villamor,et al.  Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. , 2006, Haematologica.