On Subtrees of Fan Graphs, Wheel Graphs, and “Partitions” of Wheel Graphs under Dynamic Evolution

The number of subtrees, or simply the subtree number, is one of the most studied counting-based graph invariants that has applications in many interdisciplinary fields such as phylogenetic reconstruction. Motivated from the study of graph surgeries on evolutionary dynamics, we consider the subtree problems of fan graphs, wheel graphs, and the class of graphs obtained from “partitioning” wheel graphs under dynamic evolution. The enumeration of these subtree numbers is done through the so-called subtree generation functions of graphs. With the enumerative result, we briefly explore the extremal problems in the corresponding class of graphs. Some interesting observations on the behavior of the subtree number are also presented.

[1]  赵海兴,et al.  Trees with large numbers of subtrees , 2015 .

[2]  Curtis A. Barefoot Block-cutvertex trees and block-cutvertex partitions , 2002, Discret. Math..

[3]  Hua Wang,et al.  On Algorithms for Enumerating Subtrees of Hexagonal and Phenylene Chains , 2016, Comput. J..

[4]  Yuzuru Fujiwara,et al.  Computer representation of generic chemical structures by an extended block-cutpoint tree , 1983, J. Chem. Inf. Comput. Sci..

[5]  Hua Wang,et al.  On algorithms for enumerating BC-subtrees of unicyclic and edge-disjoint bicyclic graphs , 2016, Discret. Appl. Math..

[6]  Susanne E. Hambrusch,et al.  Planar linear arrangements of outerplanar graphs , 1988 .

[7]  Iván A. Contreras,et al.  Solving the optimum communication spanning tree problem , 2019, Eur. J. Oper. Res..

[8]  Vahan V. Mkrtchyan On trees with a maximum proper partial 0-1 coloring containing a maximum matching , 2006, Discret. Math..

[9]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[10]  Hua Wang,et al.  Corrigendum: The extremal values of the Wiener index of a tree with given degree sequence , 2007, Discret. Appl. Math..

[11]  Hanyuan Deng,et al.  Wiener indices of spiro and polyphenyl hexagonal chains , 2010, Math. Comput. Model..

[12]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Directed Acyclic Graphs: Part II , 1999, SIAM J. Comput..

[13]  Ibrahim Cahit Spiral chains: A new proof of the four color theorem , 2004, math/0408247.

[14]  Hua Wang,et al.  On the Local and Global Means of Subtree Orders , 2016, J. Graph Theory.

[15]  László A. Székely,et al.  On subtrees of trees , 2005, Adv. Appl. Math..

[16]  Stephan G. Wagner,et al.  Correlation of Graph-Theoretical Indices , 2007, SIAM J. Discret. Math..

[17]  Dale R. Fox Block cutpoint decomposition for markovian queueing systems , 1988 .

[18]  Kinkar Chandra Das,et al.  Atom-bond connectivity index of graphs , 2010, Discret. Appl. Math..

[19]  Danny Ziyi Chen,et al.  Two flow network simplification algorithms , 2006, Inf. Process. Lett..

[20]  Boaz Patt-Shamir,et al.  Sparse Reliable Graph Backbones , 2010, ICALP.

[21]  Hua Wang,et al.  Binary trees with the largest number of subtrees , 2007, Discret. Appl. Math..

[22]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[23]  Gary Gordon,et al.  Subtrees of graphs , 2018, J. Graph Theory.

[24]  Hua Wang,et al.  Enumeration of BC-subtrees of trees , 2015, Theor. Comput. Sci..

[25]  Bjarne Knudsen,et al.  Optimal Multiple Parsimony Alignment with Affine Gap Cost Using a Phylogenetic Tree , 2003, WABI.

[26]  Hua Wang,et al.  The average order of a subtree of a tree , 2010, J. Comb. Theory, Ser. B.

[27]  Martin A. Nowak,et al.  Evolutionary dynamics on any population structure , 2016, Nature.

[28]  Yuzuru Fujiwara,et al.  BCT Representation of Chemical Structures , 1980, J. Chem. Inf. Comput. Sci..

[29]  Yunhao Liu,et al.  Beyond Trilateration: On the Localizability of Wireless Ad-Hoc Networks , 2009, INFOCOM 2009.

[30]  Robert E. Jamison,et al.  On the average number of nodes in a subtree of a tree , 1983, J. Comb. Theory, Ser. B.

[31]  John Haslegrave,et al.  Extremal results on average subtree density of series-reduced trees , 2013, J. Comb. Theory, Ser. B.

[32]  László A. Székely,et al.  On the Number of Nonisomorphic Subtrees of a Tree , 2018, J. Graph Theory.

[33]  Xiao-Dong Zhang,et al.  The Minimal Number of Subtrees with a Given Degree Sequence , 2015, Graphs Comb..

[34]  Dino Ienco,et al.  Mining frequent subgraphs in multigraphs , 2018, Inf. Sci..

[35]  Hua Wang,et al.  The Number of Subtrees of Trees with Given Degree Sequence , 2012, J. Graph Theory.

[36]  Hua Wang,et al.  Subtrees of spiro and polyphenyl hexagonal chains , 2015, Appl. Math. Comput..

[37]  Kimio Kawaguchi,et al.  Optimal Fault-Tolerant Routings for Connected Graphs , 1992, Inf. Process. Lett..

[38]  Stefan Irnich,et al.  Combined column-and-row-generation for the optimal communication spanning tree problem , 2018, Comput. Oper. Res..

[39]  Yeong-Nan Yeh,et al.  Enumeration of subtrees of trees , 2006, Theor. Comput. Sci..