K+ is an endothelium-derived hyperpolarizing factor in rat arteries

[1]  T. Griffith,et al.  Central role of heterocellular gap junctional communication in endothelium‐dependent relaxations of rabbit arteries , 1998, The Journal of physiology.

[2]  D. Beech,et al.  K(+)-induced dilation of a small renal artery: no role for inward rectifier K+ channels. , 1998, Cardiovascular research.

[3]  P. Vanhoutte,et al.  Epoxyeicosatrienoic acids, potassium channel blockers and endothelium‐dependent hyperpolarization in the guinea‐pig carotid artery , 1998, British journal of pharmacology.

[4]  G. Edwards,et al.  Endothelium-derived hyperpolarizing factor--a critical appraisal. , 1998, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[5]  P. Zygmunt,et al.  Studies on the effects of anandamide in rat hepatic artery , 1997, British journal of pharmacology.

[6]  K A Dora,et al.  Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Edwards,et al.  Recent advances in potassium channel modulation. , 1997, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[8]  R. Busse,et al.  A transferable, beta‐naphthoflavone‐inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells. , 1996, The Journal of physiology.

[9]  A. Schwab,et al.  Extracellular detection of K+ release during migration of transformed Madin-Darby canine kidney cells , 1996, Pflügers Archiv.

[10]  M. Nelson,et al.  Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. , 1996, The Journal of physiology.

[11]  S. Sage,et al.  Calcium‐activated potassium channels in the endothelium of intact rat aorta. , 1996, The Journal of physiology.

[12]  P. Zygmunt,et al.  Role of potassium channels in endothelium‐dependent relaxation resistant to nitroarginine in the rat hepatic artery , 1996, British journal of pharmacology.

[13]  D. Paterson Role of potassium in the regulation of systemic physiological function during exercise. , 1996, Acta physiologica Scandinavica.

[14]  P. Pratt,et al.  Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. , 1996, Circulation research.

[15]  G. Kaczorowski,et al.  Charybdotoxin and its effects on potassium channels. , 1995, The American journal of physiology.

[16]  C. Garland,et al.  Endothelium-dependent hyperpolarization: a role in the control of vascular tone. , 1995, Trends in pharmacological sciences.

[17]  R. Cohen,et al.  Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle , 1994, Nature.

[18]  C. Garland,et al.  Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery , 1992, British journal of pharmacology.

[19]  W. Halpern,et al.  Potassium dilates rat cerebral arteries by two independent mechanisms. , 1990, The American journal of physiology.

[20]  A. Henderson,et al.  Stimulus-secretion coupling in vascular endothelial cells. , 1990, Annual review of physiology.

[21]  N. Flavahan,et al.  Canine arteries release two different endothelium-derived relaxing factors. , 1989, The American journal of physiology.

[22]  F. Edwards,et al.  Inward rectification in submucosal arterioles of guinea‐pig ileum. , 1988, The Journal of physiology.

[23]  P. Vanhoutte,et al.  Endothelium‐dependent hyperpolarization of canine coronary smooth muscle , 1988, British journal of pharmacology.

[24]  M. Feelisch,et al.  Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. , 1987, European journal of pharmacology.

[25]  T. Bolton,et al.  Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea‐pig anterior mesenteric artery. , 1984, The Journal of physiology.

[26]  W. Martin,et al.  Endothelium‐dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells , 1983, British journal of pharmacology.

[27]  W. Kuschinsky,et al.  Perivascular Potassium and pH as Determinants of Local Pial Arterial Diameter in Cats: A MICROAPPLICATION STUDY , 1972, Circulation research.