Ab initio molecular-dynamics study of liquid formamide.

Properties of neat liquid formamide (HCONH2) have been studied by the combination of gradient-corrected density-functional theory, norm-conserving pseudopotentials, and the adaptive finite-element method. The structural and dynamical quantities have been calculated through molecular dynamics simulations under the Born-Oppenheimer approximation. Satisfactory agreement with experimental data was obtained for both intramolecular and intermolecular properties. Our results are also compared with those of the empirical potential functions to clarify their accuracies.

[1]  Gianni Cardini,et al.  Hydrogen bond dynamics in liquid methanol , 2003 .

[2]  M. Bellissent-Funel,et al.  X-RAY AND NEUTRON SCATTERING STUDIES OF THE TEMPERATURE AND PRESSURE DEPENDENCE OF THE STRUCTURE OF LIQUID FORMAMIDE , 1997 .

[3]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[4]  Joseph A Morrone,et al.  Ab initio molecular dynamics study of proton mobility in liquid methanol , 2002 .

[5]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[6]  Kari Laasonen,et al.  ‘‘Ab initio’’ liquid water , 1993 .

[7]  B. Rode,et al.  Structure and dynamics of liquid formamide , 1995 .

[8]  Benny G. Johnson,et al.  Comparison and Scaling of Hartree-Fock and Density Functional Harmonic Force Fields. 1. Formamide Monomer , 1994 .

[9]  M. Parrinello,et al.  Ab initio molecular dynamics simulation of liquid hydrogen fluoride , 1997 .

[10]  K. Hermansson,et al.  Structure and predicted near edge x-ray absorption fine structure spectra for the surface of liquid formamide from molecular-dynamics simulation , 2000 .

[11]  R. Ahlrichs,et al.  A test particle model potential for formamide and molecular dynamics simulations of the liquid , 1987 .

[12]  L. Radom,et al.  C−H···X Hydrogen Bonds of Acetylene, Ethylene, and Ethane with First- and Second-Row Hydrides , 2001 .

[13]  M. Holz,et al.  EXPERIMENTAL STUDY OF DYNAMIC ISOTOPE EFFECTS IN MOLECULAR LIQUIDS : DETECTION OF TRANSLATION-ROTATION COUPLING , 1996 .

[14]  J. Tse,et al.  Ab initio molecular dynamics with density functional theory. , 2003, Annual review of physical chemistry.

[15]  Gunnar Karlström,et al.  The inclusion of electron correlation in intermolecular potentials: applications to the formamide dimer and liquid formamide , 2000 .

[16]  M. Tuckerman,et al.  Simulation studies of liquid ammonia by classical ab initio, classical, and path-integral molecular dynamics , 1999 .

[17]  S. Suhai,et al.  Density functional studies of internal rotation: formamide as a prototype of the peptide bond , 1996 .

[18]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides , 1985 .

[19]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[20]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[21]  M. Räsänen A matrix infrared study of monomeric formamide , 1983 .

[22]  P. Chieux,et al.  A neutron diffraction study of liquid formamide , 1986 .

[23]  Y. Bushuev,et al.  Structural properties of liquid formamide , 1998 .

[24]  D. Marx,et al.  From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia , 2003, physics/0306154.

[25]  G. Sørensen,et al.  Molecular structure and internal motion of formamide from microwave spectrum , 1974 .

[26]  M. Tsukada,et al.  Density-functional study of liquid methanol , 1999 .

[27]  W. L. Jorgensen,et al.  Dielectric constants of formamide and dimethylformamide via computer simulation , 1995 .

[28]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[29]  Y. Miwa,et al.  Simulation of infrared spectra of formamide by the extended molecular mechanics method , 1997 .

[30]  M. Tuckerman Ab initio molecular dynamics: basic concepts, current trends and novel applications , 2002 .

[31]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[32]  Eiji Tsuchida An Efficient Algorithm for Electronic-Structure Calculations , 2002 .

[33]  Harry A. Stern,et al.  Strength of the N-HiiiO=C and C-HiiiO=C Bonds in Formamide and N-Methylacetamide Dimers , 2001 .

[34]  The conformational behavior of polyglycine as predicted by a density functional model with periodic boundary conditions , 2001 .

[35]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[36]  O. Nielsen,et al.  Vibrational spectra in the carbonyl stretching region of isotopomers of formamide in the gaseous and liquid states , 1995 .

[37]  Michele Parrinello,et al.  Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states , 2003 .

[38]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[39]  L. Pratt,et al.  Statistical determination of normal modes , 1987 .

[40]  D. R. Hamann,et al.  H 2 O hydrogen bonding in density-functional theory , 1997 .

[41]  Lei Liu,et al.  On the physical origin of blue-shifted hydrogen bonds. , 2002, Journal of the American Chemical Society.

[42]  Philip E. Gill,et al.  Limited-Memory Reduced-Hessian Methods for Large-Scale Unconstrained Optimization , 2003, SIAM J. Optim..

[43]  Steve Scheiner,et al.  Red- versus Blue-Shifting Hydrogen Bonds: Are There Fundamental Distinctions? , 2002 .

[44]  B. Rode,et al.  The Structure of Liquid Formamide Studied by Means of X-Ray Diffraction and ab Initio LCGO-MO-SCF Calculations , 1983 .

[45]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .

[46]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[47]  Y. Tamiya,et al.  Hydration of the CH Groups in 1,4-Dioxane Probed by NMR and IR: Contribution of Blue-Shifting CH···OH2 Hydrogen Bonds , 2003 .

[48]  Péter G. Szalay,et al.  High-level electron correlation calculations on formamide and the resonance model , 1997 .

[49]  Ab initio molecular dynamics study of liquid methanol , 2002, physics/0210123.

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  Michiel Sprik,et al.  Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient‐corrected density functionals , 1996 .

[52]  K. Kuchitsu,et al.  Molecular Structure of Formamide as Studied by Gas Electron Diffraction , 1974 .

[53]  Arias,et al.  Ab initio molecular dynamics: Analytically continued energy functionals and insights into iterative solutions. , 1992, Physical review letters.

[54]  R. Ludwig,et al.  Experimental and theoretical studies of hydrogen bonding in neat, liquid formamide , 1995 .

[55]  Mark E. Tuckerman,et al.  Protonic Defects in Hydrogen Bonded Liquids: Structure and Dynamics in Ammonia and Comparison with Water† , 2001 .

[56]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[57]  J. Cordeiro C(SINGLE BOND)H(DOTTED BOND)O and N(SINGLE BOND)H(DOTTED BOND)O hydrogen bonds in liquid amides investigated by Monte Carlo simulation , 1997 .

[58]  Michele Parrinello,et al.  Structural, electronic, and bonding properties of liquid water from first principles , 1999 .

[59]  M. Tsuboi,et al.  Vibration-rotation spectra of formamides. , 1983 .

[60]  Tsukada,et al.  Adaptive finite-element method for electronic-structure calculations. , 1996, Physical review. B, Condensed matter.

[61]  J. Leszczynski,et al.  Molecular structure and vibrational IR spectrum of formamide revisited : ab initio post-Hartree-Fock study , 1993 .

[62]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[63]  Pavel Hobza,et al.  Blue-Shifting Hydrogen Bonds. , 2000, Chemical reviews.

[64]  J. Barthel,et al.  The dynamics of liquid formamide, N-methylformamide, N, N-dimethylformamide, and N, N-dimethylacetamide. A dielectric relaxation study , 2002 .

[65]  O. Nielsen,et al.  Hydrogen bonding in liquid formamide. A low frequency Raman study , 1982 .

[66]  J. Dannenberg,et al.  Cooperativity in Amide Hydrogen Bonding Chains. Relation between Energy, Position, and H-Bond Chain Length in Peptide and Protein Folding Models , 2003 .

[67]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[68]  G. Fogarasi,et al.  A comparative ab initio study of amides: Part I. Force fields and vibrational assignments for formamide, acetamide and N-methylformamide , 1985 .

[69]  Jiali Gao,et al.  Simulation of Liquid Amides Using a Polarizable Intermolecular Potential Function , 1996 .

[70]  Masaru Tsukada,et al.  Large-Scale Electronic-Structure Calculations Based on the Adaptive Finite-Element Method , 1998 .

[71]  Ronnie H. Thompson,et al.  The Raman spectra of the deuterated formamides , 1972 .

[72]  A. Lees,et al.  A study of intermolecular hydrogen bonding in formamide by vibrational spectroscopy , 1979 .

[73]  S. King Infrared study of the NH2 'inversion' vibration for formamide in the vapor phase and in an argon matrix , 1971 .

[74]  E. Cabaleiro-Lago,et al.  Ab Initio and density functional theory study of the interaction in formamide and thioformamide dimers and trimers , 2002 .

[75]  M. Hippler,et al.  Nuclear Magnetic Resonance Study of Proton Relaxation in Liquid Formamide, and of its Intermolecular Structure , 1992 .

[76]  I. Suzuki Infrared Spectra and Normal Vibrations of Formamide; HCONH2, HCOND2, DCONH2 and DCOND2 , 1960 .

[77]  M. Tasumi,et al.  Liquid Structure, Infrared and Isotropic/Anisotropic Raman Noncoincidence of the Amide I Band, and Low-Wavenumber Vibrational Spectra of Liquid Formamide: Molecular Dynamics and ab Initio Molecular Orbital Studies , 1998 .

[78]  D. Hohl,et al.  Density Functional Theory and Biomolecules: A Study of Glycine, Alanine, and Their Oligopeptides , 1998 .