Generating B-spline curves with points, normals and curvature constraints: a constructive approach

This paper presents a constructive method for generating a uniform cubic B-spline curve interpolating a set of data points simultaneously controlled by normal and curvature constraints. By comparison, currently published methods have addressed one or two of those constraints (point, normal or cross-curvature interpolation), but not all three constraints simultaneously with C2 continuity. Combining these constraints provides better control of the generated curve in particular for feature curves on free-form surfaces. Our approach is local and provides exact interpolation of these constraints.

[1]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[2]  Nicholas M. Patrikalakis,et al.  Geometric design of functional surfaces , 1996, Comput. Aided Des..

[3]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[4]  Takashi Maekawa,et al.  Interpolation by geometric algorithm , 2007, Comput. Aided Des..

[5]  Shigefumi Tamura,et al.  Point-tangent/point-normal B-spline curve interpolation by geometric algorithms , 2009, Comput. Aided Des..

[6]  Ahmad H. Nasri,et al.  Skinning Catmull-Clark subdivision surfaces with incompatible cross-sectional curves , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[7]  Ahmad H. Nasri,et al.  Feature Curves with Cross Curvature Control on Catmull-Clark Subdivision Surfaces , 2006, Computer Graphics International.

[8]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[9]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[10]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[11]  Bert Jüttler,et al.  Techniques for fair- and shape-preserving surface fitting with tensor-product-B-splines , 1999 .

[12]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision curves , 2002, The Visual Computer.

[13]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[14]  Scott Schaefer,et al.  Lofting curve networks using subdivision surfaces , 2004, SGP '04.

[15]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[16]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[17]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision surfaces , 2002, The Visual Computer.

[18]  Ahmad H. Nasri,et al.  Designing Catmull-Clark subdivision surfaces with curve interpolation constraints , 2002, Comput. Graph..