Generalized projections onto convex sets

This paper introduces the notion of projection onto a closed convex set associated with a convex function. Several properties of the usual projection are extended to this setting. In particular, a generalization of Moreau’s decomposition theorem about projecting onto closed convex cones is given. Several examples of distances and the corresponding generalized projections associated to particular convex functions are presented.

[1]  G. Isac,et al.  Monotonicity of metric projections onto positive cones of ordered Euclidean spaces , 1986 .

[2]  F. Plastria,et al.  Gauge Distances and Median Hyperplanes , 2001 .

[3]  Sandor Nemeth,et al.  Isotone retraction cones in Hilbert spaces , 2010 .

[4]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[5]  John B. Moore,et al.  A finite steps algorithm for solving convex feasibility problems , 2007, J. Glob. Optim..

[6]  Sandor Nemeth,et al.  Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum , 2010 .

[7]  Olvi L. Mangasarian,et al.  Polyhedral Boundary Projection , 1999, SIAM J. Optim..

[8]  V. P. Sreedharan,et al.  Theorems of the Alternative and Duality , 1997 .

[9]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[10]  Yair Censor,et al.  Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems , 2001, Parallel Comput..

[11]  Iain S. Duff,et al.  A Block Projection Method for Sparse Matrices , 1992, SIAM J. Sci. Comput..

[12]  Yair Censor,et al.  On Diagonally Relaxed Orthogonal Projection Methods , 2007, SIAM J. Sci. Comput..

[13]  G. Isac,et al.  Isotone projection cones in Euclidean spaces , 1991 .

[14]  A. B. Németh,et al.  How to project onto an isotone projection cone , 2010 .

[15]  Panos M. Pardalos,et al.  Nonlinear analysis and variational problems : in honor of George Isac , 2010 .

[16]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .

[17]  Achiya Dax,et al.  The distance between two convex sets , 2006 .

[18]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[19]  Dan Butnariu,et al.  A Proximal-Projection Method for Finding Zeros of Set-Valued Operators , 2007, SIAM J. Control. Optim..

[20]  Nélida E. Echebest,et al.  Incomplete oblique projections for solving large inconsistent linear systems , 2007, Math. Program..

[21]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[22]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[23]  I. Csiszár Generalized projections for non-negative functions , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[24]  Olvi L. Mangasarian,et al.  Arbitrary-norm separating plane , 1999, Oper. Res. Lett..

[25]  Guo-Ping Liu,et al.  Globally optimal solutions of max–min systems , 2007, J. Glob. Optim..

[26]  Robert H. Berk,et al.  Dual Cones, Dual Norms, and Simultaneous Inference for Partially Ordered Means , 1996 .

[27]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[28]  M. Carter Computer graphics: Principles and practice , 1997 .

[29]  Frank Plastria,et al.  Optimal Expected-Distance Separating Halfspace , 2008, Math. Oper. Res..

[30]  Sandor Nemeth,et al.  Iterative methods for nonlinear complementarity problems on isotone projection cones , 2009 .

[31]  Yair Censor,et al.  Block-Iterative Algorithms with Diagonally Scaled Oblique Projections for the Linear Feasibility Problem , 2002, SIAM J. Matrix Anal. Appl..

[32]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[33]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..