A new bound for the ratio between the 2-matching problem and its linear programming relaxation

Abstract.Consider the 2-matching problem defined on the complete graph, with edge costs which satisfy the triangle inequality. We prove that the value of a minimum cost 2-matching is bounded above by 4/3 times the value of its linear programming relaxation, the fractional 2-matching problem. This lends credibility to a long-standing conjecture that the optimal value for the traveling salesman problem is bounded above by 4/3 times the value of its linear programming relaxation, the subtour elimination problem.