Hybrid evolutionary algorithm for the b-chromatic number

The b-chromatic number of a graph $$G$$G is a maximum integer $$\varphi (G)$$φ(G) for which there exists a proper $$\varphi (G)$$φ(G)-coloring with the additional property that each color class contains a vertex that is adjacent to one of the vertices within each color class. In contrast to many theoretical results discovered over the last decade and a half there are no computer running experiments on $$\varphi (G)$$φ(G) in the literature. This work presents a hybrid evolutionary algorithm for graph b-coloring. Its performance has been tested on some instances of regular graphs where their b-chromatic number is theoretically known in advance, as well as by comparing with a brute force algorithm solving the regular graphs up to 12 vertices. In addition, the algorithm has been tested on some larger graphs taken from a DIMACS challenge benchmark that also proved to be challenging for the algorithms searching for the classical chromatic number $$\chi (G)$$χ(G).

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Chính T. Hoàng,et al.  On the b-dominating coloring of graphs , 2005, Discret. Appl. Math..

[3]  Brice Effantin,et al.  The b-chromatic number of some power graphs , 2003 .

[4]  Edward C. Sewell,et al.  An improved algorithm for exact graph coloring , 1993, Cliques, Coloring, and Satisfiability.

[5]  Mohand-Said Hacid,et al.  A New Clustering Approach for Symbolic Data and Its Validation: Application to the Healthcare Data , 2006, ISMIS.

[6]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[7]  Sergio Cabello,et al.  On the b-chromatic number of regular graphs , 2011, Discret. Appl. Math..

[8]  Sandi Klavzar,et al.  The b-Chromatic Number of Cubic Graphs , 2010, Graphs Comb..

[9]  Zsolt Tuza,et al.  On the b-Chromatic Number of Graphs , 2002, WG.

[10]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[11]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[12]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[13]  A. Bonafonte,et al.  A new clustering approach for JEMA , 2008, Speech Prosody 2008.

[14]  Iztok Peterin,et al.  The b-Chromatic Index of a Graph , 2015 .

[15]  David S. Johnson,et al.  Cliques, Coloring, and Satisfiability , 1996 .

[16]  Hamamache Kheddouci,et al.  The b-chromatic number of power graphs , 2003, Discret. Math. Theor. Comput. Sci..

[17]  Alain Hertz,et al.  An adaptive memory algorithm for the k-coloring problem , 2003, Discret. Appl. Math..

[18]  Johanne Cohen,et al.  On the b-continuity property of graphs , 2007, Discret. Appl. Math..

[19]  Hamamache Kheddouci,et al.  Exact values for the b-chromatic number of a power complete k-ary tree , 2005 .

[20]  Jin-Kao Hao,et al.  A memetic algorithm for graph coloring , 2010, Eur. J. Oper. Res..

[21]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[22]  Alain Hertz,et al.  A variable neighborhood search for graph coloring , 2003, Eur. J. Oper. Res..

[23]  J. R. Brown Chromatic Scheduling and the Chromatic Number Problem , 1972 .

[24]  Mario Valencia-Pabon,et al.  On Approximating the B-Chromatic Number , 2003, Discret. Appl. Math..

[25]  Manouchehr Zaker,et al.  Bounds for the b-chromatic number of some families of graphs , 2006, Discret. Math..

[26]  Nicolas Zufferey,et al.  A graph coloring heuristic using partial solutions and a reactive tabu scheme , 2008, Comput. Oper. Res..

[27]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[28]  Iztok Peterin,et al.  ON THE b-CHROMATIC NUMBER OF SOME GRAPH PRODUCTS , 2012 .

[29]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[30]  Paolo Toth,et al.  A Metaheuristic Approach for the Vertex Coloring Problem , 2008, INFORMS J. Comput..

[31]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[32]  Ellis Horowitz,et al.  Fundamentals of Computer Algorithms , 1978 .

[33]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[34]  Thomas Stützle,et al.  An application of Iterated Local Search to Graph Coloring , 2002 .

[35]  Akash Saxena,et al.  Fundamentals of Computer , 2006 .

[36]  Mekkia Kouider,et al.  The b -chromatic number of the cartesian product of two graphs , 2007 .

[37]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[38]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for the Graph Colouring Problem Stochastic Local Search Algorithms for the Graph Colouring Problem , 2005 .

[39]  Jin-Kao Hao,et al.  A New Genetic Local Search Algorithm for Graph Coloring , 1998, PPSN.

[40]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[41]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[42]  Mekkia Kouider,et al.  Some bounds for the b-chromatic number of a grap , 2002, Discret. Math..

[43]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[44]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[45]  Christian Blum Hybrid Metaheuristics in Combinatorial Optimization: A Tutorial , 2012, TPNC.

[46]  D. Werra,et al.  Some experiments with simulated annealing for coloring graphs , 1987 .

[47]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[48]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[49]  Alain Hertz,et al.  Variable space search for graph coloring , 2006, Discret. Appl. Math..

[50]  Nicolas Zufferey,et al.  A Reactive Tabu Search Using Partial Solutions for the Graph Coloring Problem , 2004 .

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[53]  Véronique Eglin,et al.  Robust approach of address block localization in business mail by graph coloring , 2009, Int. Arab J. Inf. Technol..

[54]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[55]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[56]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[57]  Véronique Eglin,et al.  Improvement of postal mail sorting system , 2008, International Journal of Document Analysis and Recognition (IJDAR).

[58]  Brice Effantin The b-chromatic number of power graphs of complete caterpillars , 2005 .

[59]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[60]  Ana Silva,et al.  B-chromatic Index of Graphs , 2013, Electron. Notes Discret. Math..

[61]  S. Francis Raj,et al.  Bounds for the b-chromatic number of G-v , 2013, Discret. Appl. Math..

[62]  Ana Silva,et al.  The b-chromatic index of graphs , 2015, Discret. Math..

[63]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[64]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[65]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .