Dorsal and Ventral Attention Systems

The idea of two separate attention networks in the human brain for the voluntary deployment of attention and the reorientation to unexpected events, respectively, has inspired an enormous amount of research over the past years. In this review, we will reconcile these theoretical ideas on the dorsal and ventral attentional system with recent empirical findings from human neuroimaging experiments and studies in stroke patients. We will highlight how novel methods—such as the analysis of effective connectivity or the combination of neurostimulation with functional magnetic resonance imaging—have contributed to our understanding of the functionality and interaction of the two systems. We conclude that neither of the two networks controls attentional processes in isolation and that the flexible interaction between both systems enables the dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation. We discuss which brain regions potentially govern this interaction according to current task demands.

[1]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Yao,et al.  Causal Interactions in Attention Networks Predict Behavioral Performance , 2012, The Journal of Neuroscience.

[3]  George R. Mangun,et al.  Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination , 2011, NeuroImage.

[4]  Paolo Bartolomeo,et al.  Dorsal and Ventral Parietal Contributions to Spatial Orienting in the Human Brain , 2011, The Journal of Neuroscience.

[5]  Emiliano Macaluso,et al.  Orienting of spatial attention and the interplay between the senses , 2010, Cortex.

[6]  Justin L. Gardner,et al.  Feature-Specific Attentional Priority Signals in Human Cortex , 2011, The Journal of Neuroscience.

[7]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[8]  Nikolaus Weiskopf,et al.  Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI , 2009, Journal of Cognitive Neuroscience.

[9]  Joy J. Geng,et al.  Contextual Knowledge Configures Attentional Control Networks , 2011, The Journal of Neuroscience.

[10]  J. Marshall,et al.  Spatial cognition: evidence from visual neglect , 2003, Trends in Cognitive Sciences.

[11]  R. Ptak The Frontoparietal Attention Network of the Human Brain , 2012, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[12]  R. Marois,et al.  Visual Short-Term Memory Load Suppresses Temporo-Parietal Junction Activity and Induces Inattentional Blindness , 2005, Psychological science.

[13]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[14]  Ralph Weidner,et al.  What is “Odd” in Posner's Location-cueing Paradigm? Neural Responses to Unexpected Location and Feature Changes Compared , 2009, Journal of Cognitive Neuroscience.

[15]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[16]  Karl J. Friston,et al.  Deconstructing the Architecture of Dorsal and Ventral Attention Systems with Dynamic Causal Modeling , 2012, The Journal of Neuroscience.

[17]  M. Corbetta,et al.  Neural basis and recovery of spatial attention deficits in spatial neglect , 2005, Nature Neuroscience.

[18]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[19]  M. Corbetta,et al.  Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention , 2008, The Journal of Neuroscience.

[20]  R. Deichmann,et al.  Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex , 2006, Current Biology.

[21]  E. Macaluso,et al.  Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. , 2010, Cerebral cortex.

[22]  C. Kennard,et al.  The anatomy of visual neglect , 2003 .

[23]  O. Tzeng,et al.  Right temporoparietal junction and attentional reorienting , 2013, Human brain mapping.

[24]  Maurizio Corbetta,et al.  Asymmetry of Anticipatory Activity in Visual Cortex Predicts the Locus of Attention and Perception , 2007, The Journal of Neuroscience.

[25]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[26]  Aaron Kucyi,et al.  Hemispheric Asymmetry in White Matter Connectivity of the Temporoparietal Junction with the Insula and Prefrontal Cortex , 2012, PloS one.

[27]  Christopher L. Asplund,et al.  A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention , 2010, Nature Neuroscience.

[28]  M. Corbetta,et al.  Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. , 2007, Cerebral cortex.

[29]  Sven Bestmann,et al.  New approaches to the study of human brain networks underlying spatial attention and related processes , 2010, Experimental Brain Research.

[30]  R. Deichmann,et al.  Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. , 2008, Cerebral cortex.

[31]  M. Corbetta,et al.  Quantitative analysis of attention and detection signals during visual search. , 2003, Journal of neurophysiology.

[32]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[33]  F. J. Friedrich,et al.  Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. , 1998, Neuropsychology.

[34]  Ralph Weidner,et al.  Dynamic Coding of Events within the Inferior Frontal Gyrus in a Probabilistic Selective Attention Task , 2011, Journal of Cognitive Neuroscience.

[35]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[36]  Patrick Dupont,et al.  Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. , 2011, Brain : a journal of neurology.

[37]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[38]  C. Weiller,et al.  Structural connectivity for visuospatial attention: significance of ventral pathways. , 2010, Cerebral cortex.

[39]  Clayton E Curtis,et al.  Prioritized Maps of Space in Human Frontoparietal Cortex , 2012, The Journal of Neuroscience.

[40]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[41]  G. Fink,et al.  Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. , 2009, Brain : a journal of neurology.

[42]  C. Kennard,et al.  The anatomy of visual neglect. , 2003, Brain : a journal of neurology.

[43]  Patrik Vuilleumier,et al.  Abnormal Attentional Modulation of Retinotopic Cortex in Parietal Patients with Spatial Neglect , 2008, Current Biology.

[44]  M. Rushworth,et al.  Connectivity-based subdivisions of the human right "temporoparietal junction area": evidence for different areas participating in different cortical networks. , 2012, Cerebral cortex.

[45]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[46]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[47]  Christopher D Chambers,et al.  Parietal Stimulation Decouples Spatial and Feature-Based Attention , 2008, The Journal of Neuroscience.

[48]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[49]  G. V. Simpson,et al.  Dynamic Activation of Frontal, Parietal, and Sensory Regions Underlying Anticipatory Visual Spatial Attention , 2011, The Journal of Neuroscience.

[50]  Sven Bestmann,et al.  Studying the Role of Human Parietal Cortex in Visuospatial Attention with Concurrent TMS–fMRI , 2010, Cerebral cortex.

[51]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[52]  Massimo Silvetti,et al.  Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection. , 2012, Cerebral cortex.

[53]  Patrick Dupont,et al.  Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex , 2013, NeuroImage.

[54]  Céline R. Gillebert,et al.  Parcellation of parietal cortex: Convergence between lesion-symptom mapping and mapping of the intact functioning brain , 2009, Behavioural Brain Research.

[55]  Hermann J. Müller,et al.  Sources of Top–Down Control in Visual Search , 2009, Journal of Cognitive Neuroscience.

[56]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[57]  C. Weiller,et al.  Acute visual neglect and extinction: distinct functional state of the visuospatial attention system. , 2011, Brain : a journal of neurology.

[58]  E. Macaluso,et al.  Multisensory spatial interactions: a window onto functional integration in the human brain , 2005, Trends in Neurosciences.

[59]  Morris Moscovitch,et al.  Cognitive contributions of the ventral parietal cortex: an integrative theoretical account , 2012, Trends in Cognitive Sciences.

[60]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[61]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[62]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.