Optimization of process parameters in oriented strand board manufacturing with artificial neural network analysis

In the present work, an artificial neural network (ANN) model was developed for predicting the effects of some production factors such as adhesive ratio, press pressure and time, and wood density and moisture content on some physical properties of oriented strand board (OSB) such as moisture absorption, thickness swelling and thermal conductivity. The MATLAB Neural Network Toolbox was used for the training and optimization of the artificial neural network. The ANN model having the best prediction performance was determined by means of statistical and graphical comparisons. The results show that the prediction model is a useful, reliable and quite effective tool for predicting some physical properties of the OSB produced under different manufacturing conditions. Thus, this study has presented a novel and alternative approach to the literature to optimize process parameters in OSB manufacturing process.ZusammenfassungIn dieser Studie wurde ein künstliches neuronales Netz (ANN) entwickelt, um den Einfluss einiger Produktionsfaktoren, wie zum Beispiel Klebstoffmenge, Pressdruck, Pressdauer, Holzdichte und Holzfeuchte, auf die physikalischen Eigenschaften von OSB, wie Wasseraufnahme, Dickenquellung und Wärmeleitfähigkeit zu ermitteln. Für die Trainingsphase und Optimierung des künstlichen neuronalen Netzes wurde die MATLAB Neural Network Toolbox verwendet. Anhand statistischer und graphischer Vergleiche wurde das ANN Modell mit der besten Vorhersageleistung bestimmt. Die Ergebnisse zeigen, dass dieses Modell ein nützliches, zuverlässiges und effektives Werkzeug zur Vorhersage verschiedener physikalischer Eigenschaften von unter verschiedenen Bedingungen hergestelltem OSB ist. Somit wird in dieser Studie ein neuer und alternativer Ansatz für die Optimierung von Prozessparametern bei der OSB-Herstellung vorgestellt.

[1]  Temel Varol,et al.  Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks , 2012 .

[2]  Seref Sagiroglu,et al.  Neural network classification of defects in veneer boards , 2000 .

[3]  Şükrü Özşahin,et al.  THE USE OF AN ARTIFICIAL NEURAL NETWORK FOR MODELING THE MOISTURE ABSORPTION AND THICKNESS SWELLING OF ORIENTED STRAND BOARD , 2012 .

[4]  Michael Sylvester Packianather,et al.  Modelling neural network performance through response surface methodology for classifying wood veneer defects , 2004 .

[5]  Deborah F. Cook,et al.  Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network , 1997 .

[6]  Luis García Esteban,et al.  Artificial Neural Networks in Wood Identification: The Case of two Juniperus Species from the Canary Islands , 2009 .

[7]  Luis García Esteban,et al.  Prediction of plywood bonding quality using an artificial neural network , 2011 .

[8]  Lazaros S. Iliadis,et al.  Wood-water sorption isotherm prediction with artificial neural networks: A preliminary study , 2005 .

[9]  Marco Castellani,et al.  Evolutionary feature selection applied to artificial neural networks for wood-veneer classification , 2008 .

[10]  Hongwei Wu,et al.  Prediction of Timber Kiln Drying Rates by Neural Networks , 2006 .

[11]  Jun Cao,et al.  ANN-based data fusion for lumber moisture content sensors , 2006 .

[12]  D.T. Pham,et al.  Feature selection method for neural network for the classification of wood veneer defects , 2008, 2008 World Automation Congress.

[13]  Cliff T. Ragsdale,et al.  Combining a neural network with a genetic algorithm for process parameter optimization , 2000 .

[14]  Qinglin Wu,et al.  In-Plane Dimensional Stability of Oriented Strand Panel: Effect of Processing Variables , 2007 .

[15]  Hongwei Wu,et al.  Artificial neural network and mathematical modeling comparative analysis of nonisothermal diffusion of moisture in wood , 2007, Holz als Roh- und Werkstoff.

[16]  Stavros Avramidis,et al.  Wood dielectric loss factor prediction with artificial neural networks , 2006, Wood Science and Technology.

[17]  Gerson Rojas-Espinoza,et al.  IDENTIFICACION DEL CILINDRO NUDOSO EN IMÁGENES TC DE TROZAS PODADAS DE PINUS RADIATA UTILIZANDO REDES NEURONALES ARTIFICIALES IDENTIFICATION OF KNOTTY CORE IN PINUS RADIATA LOGS FROM COMPUTED TOMOGRAPHY IMAGES USING ARTIFICIAL NEURAL NETWORK , 2010 .

[18]  Michael Sylvester Packianather,et al.  Neural Networks for Classifying Images of Wood Veneer. Part 2 , 2000 .

[19]  Michael Sylvester Packianather,et al.  Comparison of neural and minimum distance classifiers in wood veneer defect identification , 2005 .

[20]  Cen Ke-fa Nonlinear fitting calculation of wood thermal conductivity using neural networks , 2007 .

[21]  Yu Liu,et al.  Wood Defect Identification Based on Artificial Neural Network , 2009 .

[22]  Gerson Rojas Espinoza,et al.  IDENTIFICACION DEL CILINDRO NUDOSO EN IMÁGENES TC DE TROZAS PODADAS DE PINUS RADIATA UTILIZANDO REDES NEURONALES ARTIFICIALES , 2010 .

[23]  Marzuki Khalid,et al.  DESIGN OF AN INTELLIGENT WOOD SPECIES RECOGNITION SYSTEM , 2008 .

[24]  Ernestina Menasalvas,et al.  Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model , 2012 .

[25]  W. Kurdthongmee,et al.  Colour classification of rubberwood boards for fingerjoint manufacturing using a SOM neural network and image processing , 2008 .

[26]  Lazaros S. Iliadis,et al.  Neural network prediction of bending strength and stiffness in western hemlock (Tsuga heterophylla Raf.) , 2007 .

[27]  R. E. Shannon,et al.  A neural network to predict particleboard manufacturing process parameters , 1991 .

[28]  L. García Esteban,et al.  Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model , 2008 .

[29]  Lazaros S. Iliadis,et al.  Predicting Wood Thermal Conductivity Using Artificial Neural Networks , 2007 .

[30]  Sun Liping,et al.  Modeling of temperature-humidity for wood drying based on time-delay neural network , 2006 .

[31]  Nasser Hosseinzadeh,et al.  Improving the Generalization Ability of an Artificial Neural Network in Predicting In-Flight Particle Characteristics of an Atmospheric Plasma Spray Process , 2012, Journal of Thermal Spray Technology.

[32]  Deborah F. Cook,et al.  Neural-network process modeling of a continuous manufacturing operation , 1993 .

[33]  Sandhya Samarasinghe,et al.  Neural Networks for predicting fracture toughness of individual wood samples , 2007 .

[34]  I. Ceylan Determination of Drying Characteristics of Timber by Using Artificial Neural Networks and Mathematical Models , 2008 .

[35]  Michael Sylvester Packianather,et al.  A decision tree of neural networks for classifying images of wood veneer , 1998 .

[36]  Luis García Esteban,et al.  Artificial neural networks in variable process control: application in particleboard manufacture , 2009 .

[37]  Jerrold E. Winandy,et al.  THE EFFECT OF CYCLIC RELATIVE HUMIDITY CHANGES ON MOISTURE CONTENT AND THICKNESS SWELLING BEHAVIOR OF ORIENTED STRANDBOARD , 2009 .

[38]  Yong Haur Tay,et al.  Computer Vision-based Wood Recognition System , 2007 .

[39]  Robert W. Rice,et al.  Detection of Structural Damage in Medium Density Fiberboard Panels using Neural Network Method , 2008 .

[40]  Cheng Piao,et al.  Thickness swelling and its relationship to internal bond strength loss of commercial oriented strandboard , 1999 .

[41]  Kadri Cemil Akyüz,et al.  PREDICTION OF THE FINANCIAL RETURN OF THE PAPER SECTOR WITH ARTIFICIAL NEURAL NETWORKS , 2011 .

[42]  Francisco García Fernández,et al.  MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing , 2009 .

[43]  Weidong Zeng,et al.  Modeling Constitutive Relationship of BT25 Titanium Alloy During Hot Deformation by Artificial Neural Network , 2012, Journal of Materials Engineering and Performance.

[44]  Urban Nordmark,et al.  Knot Identification from CT Images of Young Pinus sylvestris Sawlogs Using Artificial Neural Networks , 2002 .