Electron–positron cascades in multiple-laser optical traps

We present an analytical and numerical study of multiple-laser QED cascades induced with linearly polarised laser pulses. We analyse different polarisation orientations and propose a configuration that maximises the cascade multiplicity and favours the laser absorption. We generalise the analytical estimate for the cascade growth rate previously calculated in the field of two colliding linearly polarised laser pulses and account for multiple laser interaction. The estimate is verified by a comprehensive numerical study of four-laser QED cascades across a range of different laser intensities with QED PIC module of OSIRIS. We show that by using four linearly polarised 30 fs laser pulses, one can convert more than 50 % of the total energy to gamma-rays already at laser intensity $I\simeq10^{24}\ \mathrm{W/cm^2}$. In this configuration, the laser conversion efficiency is higher compared with the case with two colliding lasers.

[1]  B. Ersfeld,et al.  High field physics and QED experiments at ELI-NP , 2016 .

[2]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[3]  E. N. Nerush,et al.  Laser field absorption in self-generated electron-positron pair plasma. , 2011 .

[4]  Georg Korn,et al.  ELI-beamlines: extreme light infrastructure science and technology with ultra-intense lasers , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[5]  R. Fonseca,et al.  Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses , 2015, 1512.05174.

[6]  S. V. Bulanov,et al.  Electron dynamics and γ and e(-)e(+) production by colliding laser pulses. , 2015, Physical review. E.

[7]  V. S. Popov,et al.  Multiple colliding electromagnetic pulses: a way to lower the threshold of e+ e- pair production from vacuum. , 2010, Physical review letters.

[8]  C. Keitel,et al.  Semiclassical picture for electron-positron photoproduction in strong laser fields , 2015, 1503.03271.

[9]  J. G. Kirk,et al.  Pair production in counter-propagating laser beams , 2009, 0905.0987.

[10]  T. Arber,et al.  Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. , 2012, Physical review letters.

[11]  Ricardo A. Fonseca,et al.  Particle merging algorithm for PIC codes , 2014, Comput. Phys. Commun..

[12]  Anthony Bell,et al.  Monte Carlo calculations of pair production in high-intensity laser–plasma interactions , 2010, 1010.4584.

[13]  S. S. Bulanov,et al.  Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses , 2013, 1306.1260.

[14]  R. Fonseca,et al.  Seeded QED cascades in counterpropagating laser pulses. , 2015, Physical review. E.

[15]  A. Piazza,et al.  Stochasticity effects in quantum radiation reaction. , 2013, Physical review letters.

[16]  A. Bell,et al.  Measuring quantum radiation reaction in laser–electron-beam collisions , 2014, Physical review letters.

[17]  Mathieu Lobet,et al.  Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser-plasma interaction , 2013, 1311.1107.

[18]  E Wallin,et al.  Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  E. N. Nerush,et al.  QED cascades induced by circularly polarized laser fields , 2010, 1010.4528.

[20]  S. V. Bulanov,et al.  Schwinger limit attainability with extreme power lasers. , 2010, Physical review letters.

[21]  Georg Korn,et al.  ELI Extreme Light Infrastructure science and technology with ultra-intense lasers , 2013, CLEO: 2013.

[22]  Gerard Mourou,et al.  Erratum: Limitations on the Attainable Intensity of High Power Lasers [Phys. Rev. Lett.105, 080402 (2010)] , 2010 .

[23]  E. N. Nerush,et al.  Production and dynamics of positrons in ultrahigh intensity laser-foil interactions , 2016, 1606.08187.

[24]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[25]  M. Kando,et al.  On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam , 2011 .

[26]  V. M. Katkov,et al.  Quantum effects in magnetic bremsstrahlung , 1967 .

[27]  G. Mourou,et al.  Anomalous radiative trapping in laser fields of extreme intensity. , 2013, Physical review letters.

[28]  N. Narozhny,et al.  Effect of laser polarization on quantum electrodynamical cascading , 2014 .

[29]  R. Fonseca,et al.  Quantum radiation reaction in head-on laser-electron beam interaction , 2015, 1511.04406.

[30]  S. Karsch,et al.  Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime. , 2015, Physical review letters.

[31]  A. Zhidkov,et al.  Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach , 2013, 1308.1608.

[32]  N. Narozhny,et al.  Electron-positron pair production by electromagnetic pulses , 2006 .

[33]  C. Keitel,et al.  Quantum radiation reaction effects in multiphoton Compton scattering. , 2010, Physical review letters.

[34]  N. Narozhny,et al.  Collapse and revival of electromagnetic cascades in focused intense laser pulses , 2014, 1407.6760.

[35]  N. P. Klepikov,et al.  EMISSION OF PHOTONS OR ELECTRON-POSITRON PAIRS IN MAGNETIC FIELDS , 1954 .

[36]  M. Marklund,et al.  Quantum Radiation Reaction: From Interference to Incoherence. , 2015, Physical review letters.

[37]  A. Bell,et al.  Possibility of prolific pair production with high-power lasers. , 2008, Physical review letters.

[38]  T. Erber,et al.  High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields , 1966 .

[39]  E. N. Nerush,et al.  Optimized multibeam configuration for observation of QED cascades , 2015, 1505.06680.

[40]  A M Fedotov,et al.  Limitations on the attainable intensity of high power lasers. , 2010, Physical review letters.

[41]  C. Keitel,et al.  Ultrahigh Brilliance Multi-MeV γ-Ray Beams from Nonlinear Relativistic Thomson Scattering. , 2014, Physical review letters.

[42]  Dino A. Jaroszynski,et al.  Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses , 2015, 1504.03480.

[43]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[44]  R. Fonseca,et al.  Laser absorption via QED cascades in counter propagating laser pulses , 2018 .

[45]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[46]  A. Ilderton,et al.  Exploring high-intensity QED at ELI , 2008, 0811.1960.

[47]  V. I. Ritus Quantum effects of the interaction of elementary particles with an intense electromagnetic field , 1985 .

[48]  L. Gremillet,et al.  Ultrafast Synchrotron-Enhanced Thermalization of Laser-Driven Colliding Pair Plasmas. , 2015, Physical review letters.

[49]  A. I. Nikishov,et al.  Pair Production by a Photon and Photon Emission by an Electron in the Field of an Intense Electromagnetic Wave and in a Constant Field , 1967 .