Tensor-GMRES Method for Large Systems of Nonlinear Equations

This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large systems of nonlinear equations. Krylov subspace projection techniques for asymmetric systems of linear equations are coupled with a tensor model formation and solution technique for nonlinear equations. Similar to traditional tensor methods, the new tensor method is shown to have significant computational advantages over the analogous Newton counterpart on a set of nonsingular and singular problems. For example, an application to the Euler equations for the flow through a nozzle with a given area ratio shows that the tensor-GMRES method can be much more efficient than the analogous Newton-GMRES method. The new tensor method is also consistent with preconditioning and matrix-free implementation.

[1]  P. Brown,et al.  Reduced storage matrix methods in stiff ODE systems , 1989, Conference on Numerical Ordinary Differential Equations.

[2]  Timothy J. Barth,et al.  Analysis of implicit local linearization techniques for upwind and TVD algorithms , 1987 .

[3]  C. Kelley,et al.  A New Acceleration Method for Newton’s Method at Singular Points , 1983 .

[4]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[5]  S Rogers,et al.  A comparison of implicit schemes for the incompressible Navier-Stokes equations with artificial compressibility , 1995 .

[6]  C. Kelley,et al.  Newton’s Method at Singular Points. I , 1980 .

[7]  Ali Bouaricha Tensor-Krylov methods for large nonlinear equations , 1996, Comput. Optim. Appl..

[8]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[9]  G. Reddien On Newton’s Method for Singular Problems , 1978 .

[10]  A. Griewank On Solving Nonlinear Equations with Simple Singularities or Nearly Singular Solutions , 1985 .

[11]  C. Kelley,et al.  Convergence Acceleration for Newton’s Method at Singular Points , 1982 .

[12]  M. R. Osborne,et al.  Analysis of Newton’s Method at Irregular Singularities , 1983 .

[13]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[14]  T. Pulliam Efficient solution methods for the Navier-Stokes equations , 1986 .

[15]  J. Miller Numerical Analysis , 1966, Nature.

[16]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[17]  Dan Feng,et al.  Local convergence analysis of tensor methods for nonlinear equations , 1993, Math. Program..

[18]  Thomas H. Pulliam,et al.  Artificial Dissipation Models for the Euler Equations , 1985 .

[19]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[20]  T. Chan,et al.  The Use of Iterative Linear-Equation Solvers in Codes for Large Systems of Stiff IVPs for ODEs , 1986 .

[21]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[22]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[23]  A. Bouaricha Solving large sparse systems of nonlinear equations and nonlinear least squares problems using tensor methods on sequential and parallel computers , 1992 .

[24]  H. Keller,et al.  CONVERGENCE RATES FOR NEWTON'S METHOD AT SINGULAR POINTS* , 1983 .

[25]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[26]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[27]  R. Schnabel,et al.  Tensor Methods for Nonlinear Equations. , 1984 .

[28]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[29]  Dan Feng,et al.  Tensor Methods for Equality Constrained Optimization , 1996, SIAM J. Optim..