International Conference on Information Systems ( ICIS ) 1-1-2010 CUSTOMER HETEROGENEITY AND TARIFF BIASES IN CLOUD COMPUTING

In the last two years, mainly practitioners published newspapers and technical reports - outlining the benefits and obstacles of Cloud Computing. Scientific research is limited to technical issues of Cloud Computing so far. Marketing and economic issues have been barely discussed in literature. Especially, customer considerations and pricing are only discussed vaguely in industry reports. A detailed understanding of the preferences enables providers to design efficient pricing models. Therefore, a survey was conducted to analyze the customer preferences for Cloud services. The results show heterogeneity in preferences and suggest the application of second degree price discrimination. Furthermore, the survey shows existence of flat rate and pay per use tariff bias for Cloud services. Thus, Cloud providers offer their services successfully with a flat rate tariff model, which contradict literature’s prediction of a dominance of flexible pay per use tariffs.

[1]  San Francisco 2009 CLOUD COMPUTING TRENDS REPORT , 2009 .

[2]  Dennis L. Weisman,et al.  Option value, telecommunications demand, and policy , 1993 .

[3]  S. Auty Using Conjoint Analysis in Industrial Marketing The Role of Judgment , 1995 .

[4]  Peter E. Rossi,et al.  Bayesian Statistics and Marketing , 2005 .

[5]  B. Skiera,et al.  Paying Too Much and Being Happy about It: Existence, Causes, and Consequences of Tariff-Choice Biases , 2006 .

[6]  Rajkumar Buyya,et al.  Article in Press Future Generation Computer Systems ( ) – Future Generation Computer Systems Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility , 2022 .

[7]  Gerard Briscoe,et al.  Digital ecosystems in the clouds: Towards community cloud computing , 2009, 2009 3rd IEEE International Conference on Digital Ecosystems and Technologies.

[8]  L. Youseff,et al.  Toward a Unified Ontology of Cloud Computing , 2008, 2008 Grid Computing Environments Workshop.

[9]  Richard R. Batsell,et al.  A Monté Carlo Comparison of Estimators for the Multinomial Logit Model , 1989 .

[10]  Xianggui Qu,et al.  Multivariate Data Analysis , 2007, Technometrics.

[11]  Sridhar Seshadri,et al.  Product Development and Pricing Strategy for Information Goods Under Heterogeneous Outside Opportunities , 2007, Inf. Syst. Res..

[12]  Kim Bartel Sheehan,et al.  E-mail Survey Response Rates: A Review , 2006, J. Comput. Mediat. Commun..

[13]  Jordan J. Louviere,et al.  Quick and easy choice sets: Constructing optimal and nearly optimal stated choice experiments , 2005 .

[14]  John R. Hauser,et al.  Conjoint Analysis, Related Modeling, and Applications , 2004 .

[15]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[16]  Doug Johnson,et al.  Computing in the Clouds. , 2010 .

[17]  A. Gustafsson,et al.  On the Influence of the Evaluation Methods in Conjoint Design — Some Empirical Results , 2003 .

[18]  Michel Wedel,et al.  Latent class metric conjoint analysis , 1992 .

[19]  H. Varian,et al.  The Economics Of Information Technology , 2004 .

[20]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[21]  Chris Rose,et al.  A Break in the Clouds: Towards a Cloud Definition , 2011 .

[22]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[23]  Paul E. Green,et al.  Thirty Years of Conjoint Analysis: Reflections and Prospects , 2001, Interfaces.

[24]  R. Weiber,et al.  Auswahl von Eigenschaften und Ausprägungen bei der Conjointanalyse , 2009 .

[25]  Christof Weinhardt,et al.  Business Models in the Service World , 2009, IT Professional.

[26]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[27]  Sonja Gensler Ermittlung von Präferenzen für Produkteigenschaften mit Hilfe der Choice-Based Conjoint Analyse (Teil II) , 2006 .

[28]  Christoph Breidert,et al.  Estimation of willingness-to-pay. Theory, measurement, and application. , 2005 .

[29]  Jordan J. Louviere,et al.  Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data , 1983 .

[30]  BuyyaRajkumar,et al.  Cloud computing and emerging IT platforms , 2009 .

[31]  Ingo Balderjahn,et al.  Choice-Based Conjointanalyse , 2021, Conjointanalyse.