SPACE WEATHERING OF ASTEROID SURFACES

▪ Abstract Visible and near-infrared spectra of reflected sunlight from asteroid surfaces exhibit features that hold the promise for identifying surface mineralogy. However, the very surfaces that are observed by remote-sensing are also subject to impingement by micrometeoroids and solar wind particles, which are believed to play the dominant role in space weathering, which is the time-dependent modification of an asteroid's reflectance spectrum. Such space weathering has confused the interpretations of telescopic spectra of asteroids, especially concerning the possible association of common ordinary chondritic meteorites with so-called S-type asteroids. Recent spacecraft studies of asteroids (especially of Eros by NEAR-Shoemaker) have documented aspects of space weathering processes, but we still do not understand the physics of space weathering well enough to confidently assay mineralogy of diverse asteroids by remote-sensing. A review of the intellectual history of this topic reveals the complexity of ...

[1]  M. Gaffey,et al.  Asteroids: Surface Composition from Reflection Spectroscopy , 1974, Science.

[2]  C. Chapman,et al.  ASTEROIDS AND METEORITES , 2021, Disturbing the Solar System.

[3]  M. Gaffey The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials , 1986 .

[4]  Richard P. Binzel,et al.  Small Main-Belt Asteroid Spectroscopic Survey in the Near-Infrared , 2002 .

[5]  A. McEwen,et al.  Geology of 243 Ida , 1996 .

[6]  G. Wetherill Cometary Versus Asteroidal Origin of Chondritic Meteorites , 1971 .

[7]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[8]  Michael H. Wong,et al.  Radiation effects on the surfaces of the Galilean satellites , 2004 .

[9]  S. Squyres,et al.  The composition of 433 Eros: A mineralogical—chemical synthesis , 2001 .

[10]  Harold F. Levison,et al.  The recent breakup of an asteroid in the main-belt region , 2002, Nature.

[11]  Alessandro Morbidelli,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[12]  R. Housley,et al.  Origin and characteristics of excess Fe metal in lunar glass welded aggregates , 1973 .

[13]  N. T. Bobrovnikoff The spectra of minor planets , 1929 .

[14]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[15]  L. Wilkening Meteorites in meteorites - Evidence for mixing among the asteroids , 1977 .

[16]  T. McCord,et al.  Alteration of Lunar Optical Properties: Age and Composition Effects , 1971, Science.

[17]  T. McCord,et al.  Asteroid spectral reflectivities. , 1973 .

[18]  E. Anders Reasons for not Having an Early Asteroid Mission , 1971 .

[19]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[20]  M. Skrutskie,et al.  Discovery of a Main-Belt Asteroid Resembling Ordinary Chondrite Meteorites , 1993, Science.

[21]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[22]  J. Salisbury,et al.  Comparisons of meteorite and asteroid spectral reflectivities , 1973 .

[23]  S. Murchie,et al.  Spectral properties and rotational spectral heterogeneity of 433 Eros , 1996 .

[24]  S. Murchie,et al.  Color Variations on Eros from NEAR Multispectral Imaging , 2002 .

[25]  Andrew Scott Rivkin,et al.  Hydrated Minerals on Asteroids: The Astronomical Record , 2003 .

[26]  Paul G. Lucey,et al.  Implications of temperature‐dependent near‐IR spectral properties of common minerals and meteorites for remote sensing of asteroids , 1999 .

[27]  S. Murchie,et al.  Space weathering on Eros: Constraints from albedo and spectral measurements of Psyche crater , 2001 .

[28]  S. Squyres,et al.  X‐ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros , 2001 .

[29]  M. Malin,et al.  Near-IR Reflectance Spectroscopy of 433 Eros from the NIS Instrument on the NEAR Mission: I. Low Phase Angle Observations , 2002 .

[30]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[31]  A. McEwen,et al.  Galileo Photometry of Asteroid 243 Ida , 1996 .

[32]  M. Gaffey,et al.  Mineralogical-petrological characterization of near-Earth asteroids , 1984 .

[33]  T. Hiroi,et al.  The mystery of 506.5 nm feature of reflectance spectra of Vesta and Vestoids: Evidence for space weathering? , 2001 .

[34]  Torrence V. Johnson,et al.  A Review of Spectrophotometric Studies of Asteroids , 1971 .

[35]  S. Murchie,et al.  Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros , 2001, Nature.

[36]  P. Zimmerman,et al.  Asteroidal Source of Meteorites , 1973, Science.

[37]  T. Hiroi,et al.  Importance of space weathering simulation products in compositional modeling of asteroids: 349 Dembowska and 446 Aeternitas as examples , 2001 .

[38]  M. Robinson,et al.  Disk-Integrated Photometry of 433 Eros , 2002 .

[39]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[40]  M. Gaffey,et al.  Reflectance spectra for 277 asteroids , 1979 .

[41]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[42]  A. McEwen,et al.  Galileo Encounter with 951 Gaspra: First Pictures of an Asteroid , 1992, Science.

[43]  G. Hahn,et al.  Physical Properties of Near-Earth Objects , 2002 .

[44]  L. Nittler,et al.  The Near Earth Asteroid Rendezvous Mission to Asteroid 433 Eros: A Milestone in the Study of Asteroids and their Relationship to Meteorites , 2002 .

[45]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[46]  D. Matson Infrared Observations of Asteroids , 1971 .

[47]  D. B. Nash,et al.  Spectral reflectance and albedo of Apollo 11 lunar samples - Effects of irradiation and vitrification and comparison with telescopic observations , 1970 .

[48]  Matthias Schnaubelt,et al.  Mineralogical interpretation of reflectance spectra of Eros from NEAR near‐infrared spectrometer low phase flyby , 2001 .

[49]  Patrick Michel,et al.  Dynamics of Eros , 1998 .

[50]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[51]  C. Peterson A source mechanism for meteorites controlled by the Yarkovsky effect , 1976 .

[52]  Clark R. Chapman,et al.  S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .

[53]  B. Hapke Lunar Surface: Composition Inferred from Optical Properties , 1968, Science.

[54]  Jack Wisdom,et al.  Meteorites may follow a chaotic route to Earth , 1985, Nature.

[55]  Sho Sasaki,et al.  Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering , 2001, Nature.

[56]  C. Chapman,et al.  Spectroscopic evidence for undifferentiated S-type asteroids , 1982 .

[57]  D. Mckay,et al.  Discovery of Vapor Deposits in the Lunar Regolith , 1993, Science.

[58]  Bruce Hapke,et al.  Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties OE the lunar regolith , 1975 .

[59]  B. Hapke Inferences From Optical Properties Concerning The Surface Texture and Composition of Asteroids , 1971 .

[60]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[61]  A. McEwen,et al.  First Images of Asteroid 243 Ida , 1994, Science.

[62]  Hideo Ohashi,et al.  Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples , 1999 .

[63]  P. Thomas,et al.  Impact History of Eros: Craters and Boulders , 2002 .

[64]  C. Pieters,et al.  Optical Effects of Regolith Processes on S-Asteroids as Simulated by Laser Shots on Ordinary Chondrite and Other Mafic Materials , 1996 .

[65]  R. Binzel,et al.  Spectral Properties of Near-Earth Asteroids: Evidence for Sources of Ordinary Chondrite Meteorites , 1996, Science.

[66]  T. Johnson,et al.  Soil maturity and planetary regoliths: the Moon, Mercury, and the asteroids. , 1977 .

[67]  M. Gaffey,et al.  Meteoritic parent bodies: nature, number, size and relation to present-day asteroids. , 1989 .

[68]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[69]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[70]  Clark R. Chapman,et al.  Ponded deposits on asteroid 433 Eros , 2002 .

[71]  R. Killen Depletion of sulfur on the surface of asteroids and the moon , 2003 .

[72]  Daniel D. Durda,et al.  EROSION AND EJECTA REACCRETION ON 243 IDA AND ITS MOON , 1996 .

[73]  Klaus Keil,et al.  Geological History of Asteroid 4 Vesta: The "Smallest Terrestrial Planet" , 2002 .

[74]  B. Hapke,et al.  Asteroid Space Weathering and Regolith Evolution , 2002 .

[75]  E. Anders,et al.  Interrelations of meteorites, asteroids, and comets , 1971 .

[76]  L. Lemelle,et al.  Destabilization of olivine by 30-keV electron irradiation: a possible mechanism of space weathering affecting interplanetary dust particles and planetary surfaces , 2003 .

[77]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .