The maximum number and its distribution of singular points for parametric piecewise algebraic curves

Abstract The piecewise algebraic curve, as the zero set of a bivariate spline function, is a generalization of the classical algebraic curve. Based on the previous method presented by Lai et al. (2009), we show that computing singular points of parametric piecewise algebraic curves amounts to solving parametric piecewise polynomial systems. In this article, we give a method to compute the maximum number and its distribution of singular points for a given parametric piecewise algebraic curve. This method also produces necessary and sufficient conditions of its parameters must be satisfied. An illustrated example shows that our method is flexible.

[1]  Yisheng Lai,et al.  Bounds on the number of solutions of polynomial systems and the Betti numbers of real piecewise algebraic hypersurfaces , 2018, J. Comput. Appl. Math..

[2]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[3]  Renhong Wang,et al.  Real root classification of parametric spline functions , 2015, Appl. Math. Comput..

[4]  Yisheng Lai,et al.  The Viro method for construction of Bernstein-Bézier algebraic hypersurface piece , 2012 .

[5]  Rida T. Farouki,et al.  Singular Points of Algebraic Curves , 1990, J. Symb. Comput..

[6]  Yisheng Lai,et al.  Solving parametric piecewise polynomial systems , 2011, J. Comput. Appl. Math..

[7]  Shaofan Wang,et al.  The Cayley-Bacharach theorem for continuous piecewise algebraic curves over cross-cut triangulations , 2011 .

[8]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[9]  Dongming Wang,et al.  Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..

[10]  Xiquan Shi,et al.  The Bezout Number for Piecewise Algebraic Curves , 1999 .

[11]  Bican Xia,et al.  DISCOVERER: a tool for solving semi-algebraic systems , 2007, ACCA.

[12]  Dehui Kong,et al.  Estimate of The Bézout Number For Linear Piecewise Algebraic Curves Over Arbitrary Triangulations , 2011, SIAM J. Discret. Math..

[13]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[14]  Yisheng Lai,et al.  The Viro Method for Construction of ${C}^{r}$ Piecewise Algebraic Hypersurfaces , 2013 .

[15]  RenHong Wang,et al.  Nöther-type theorem of piecewise algebraic curves on quasi-cross-cut partition , 2009 .

[16]  Jinming Wu Real intersection points of piecewise algebraic curves , 2012, Appl. Math. Lett..

[17]  Bican Xia,et al.  A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.

[18]  Ren-Hong Wang,et al.  Piecewise algebraic curve , 2002 .

[19]  Xiaolei Zhang,et al.  An upper bound of the Bezout number for piecewise algebraic curves , 2015, J. Comput. Appl. Math..

[20]  Jinming Wu,et al.  Real zeros of the zero-dimensional parametric piecewise algebraic variety , 2009 .

[21]  Ren-Hong Wang,et al.  Recent researches on multivariate spline and piecewise algebraic variety , 2008 .

[22]  Yisheng Lai,et al.  The Nöther and Riemann-Roch type theorems for piecewise algebraic curve , 2007 .

[23]  Ren-Hong Wang,et al.  Nöther-type theorem of piecewise algebraic curves , 2004 .

[24]  Ren-Hong Wang,et al.  Cayley-Bacharach theorem of piecewise algebraic curves , 2004 .

[25]  Ren-Hong Wang,et al.  Multivariate spline and algebraic geometry , 2000 .

[26]  Wenping Wang,et al.  Computing singular points of plane rational curves , 2008, J. Symb. Comput..

[27]  R. J. Walker Algebraic curves , 1950 .