Constrained sparse Galerkin regression

The sparse identification of nonlinear dynamics (SINDy) is a recently proposed data-driven modelling framework that uses sparse regression techniques to identify nonlinear low-order models. With the goal of low-order models of a fluid flow, we combine this approach with dimensionality reduction techniques (e.g. proper orthogonal decomposition) and extend it to enforce physical constraints in the regression, e.g. energy-preserving quadratic nonlinearities. The resulting models, hereafter referred to as Galerkin regression models, incorporate many beneficial aspects of Galerkin projection, but without the need for a high-fidelity solver to project the Navier–Stokes equations. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. Galerkin regression models also readily generalize to include higher-order nonlinear terms that model the effect of truncated modes. The effectiveness of such an approach is demonstrated on two canonical flow configurations: the two-dimensional flow past a circular cylinder and the shear-driven cavity flow. For both cases, the accuracy of the identified models compare favourably against reduced-order models obtained from a standard Galerkin projection procedure. Finally, the entire code base for our constrained sparse Galerkin regression algorithm is freely available online.

[1]  Gilead Tadmor,et al.  Galerkin Method for Nonlinear Dynamics , 2011 .

[2]  M. Carini,et al.  Centre-manifold reduction of bifurcating flows , 2015, Journal of Fluid Mechanics.

[3]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[4]  Peter J. Schmid,et al.  Recursive dynamic mode decomposition of transient and post-transient wake flows , 2016, Journal of Fluid Mechanics.

[5]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[6]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[7]  Peter J. Schmid,et al.  Closed-loop control of an open cavity flow using reduced-order models , 2009, Journal of Fluid Mechanics.

[8]  T K Sengupta,et al.  Enstrophy-based proper orthogonal decomposition for reduced-order modeling of flow past a cylinder. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  W. Stankiewicz,et al.  Recursive dynamic mode decomposition of a transient cylinder wake , 2015, 1511.06876.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Clarence W. Rowley,et al.  Feedback control of flow resonances using balanced reduced-order models , 2011 .

[13]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[14]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[15]  Denis Sipp,et al.  Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis , 2013, Journal of Fluid Mechanics.

[16]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[17]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[18]  Dan S. Henningson,et al.  Matrix-Free Methods for the Stability and Control of Boundary Layers , 2009 .

[19]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[20]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[21]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[22]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[23]  Peter Jordan,et al.  Qualitative dynamics of wave packets in turbulent jets , 2016, 1608.06750.

[24]  Martin J. Brenner,et al.  Nonlinear System Identification of Aeroelastic Systems: A Structure-detection Approach , 2007 .

[25]  Michael Schumm,et al.  Self-excited oscillations in the wake of two-dimensional bluff bodies and their control , 1994, Journal of Fluid Mechanics.

[26]  B. R. Noack,et al.  On long-term boundedness of Galerkin models , 2013, Journal of Fluid Mechanics.

[27]  O. Marxen,et al.  Steady solutions of the Navier-Stokes equations by selective frequency damping , 2006 .

[28]  Aswin C. Sankaranarayanan,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[29]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[30]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[31]  J. Rossiter Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds , 1964 .

[32]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[33]  Wen-Xu Wang,et al.  Predicting catastrophes in nonlinear dynamical systems by compressive sensing. , 2011, Physical review letters.

[34]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[35]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[36]  J. Nathan Kutz,et al.  Deep learning in fluid dynamics , 2017, Journal of Fluid Mechanics.

[37]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[38]  Hod Lipson,et al.  Automated reverse engineering of nonlinear dynamical systems , 2007, Proceedings of the National Academy of Sciences.

[39]  Thomas Peters,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn., by P. Holmes , 2012 .

[40]  R. Henderson,et al.  Three-dimensional Floquet stability analysis of the wake of a circular cylinder , 1996, Journal of Fluid Mechanics.

[41]  A. Zebib Stability of viscous flow past a circular cylinder , 1987 .

[42]  Denis Sipp,et al.  Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows , 2007, Journal of Fluid Mechanics.

[43]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[44]  Steven L. Brunton,et al.  Data-driven discovery of partial differential equations , 2016, Science Advances.

[45]  H. Schaeffer,et al.  Learning partial differential equations via data discovery and sparse optimization , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  D. Henningson,et al.  Input–output analysis, model reduction and control of the flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[47]  Tilo Wiklund,et al.  Parsimonious Dynamical Systems using the LASSO and the Bootstrap , 2014 .

[48]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[49]  R. Goodman,et al.  Application of neural networks to turbulence control for drag reduction , 1997 .

[50]  Gilead Tadmor,et al.  Mean field representation of the natural and actuated cylinder wake , 2010 .

[51]  Trent McConaghy,et al.  FFX: Fast, Scalable, Deterministic Symbolic Regression Technology , 2011 .

[52]  Kunihiko Taira,et al.  Network-theoretic approach to sparsified discrete vortex dynamics , 2015, Journal of Fluid Mechanics.

[53]  Steven L. Brunton,et al.  Sparse Identification of Nonlinear Dynamics with Control (SINDYc) , 2016, 1605.06682.

[54]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[55]  J N Kutz,et al.  Model selection for dynamical systems via sparse regression and information criteria , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[57]  Paul T. Boggs,et al.  Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics , 2014, SIAM J. Sci. Comput..

[58]  Peter J. Schmid,et al.  Linear Closed-Loop Control of Fluid Instabilities and Noise-Induced Perturbations: A Review of Approaches and Tools , 2016 .

[59]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[60]  D. Barkley Linear analysis of the cylinder wake mean flow , 2006 .

[61]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[62]  Bernd R. Noack,et al.  Reduced-order modelling of the flow around a high-lift configuration with unsteady Coanda blowing , 2015, Journal of Fluid Mechanics.

[63]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[64]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[65]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[66]  Earl H. Dowell,et al.  Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation , 2013, Journal of Fluid Mechanics.

[67]  Peter Jordan,et al.  Qualitative dynamics of wavepackets in turbulent jets , 2016 .

[68]  Gene H. Golub,et al.  Matrix computations , 1983 .

[69]  Steven L. Brunton,et al.  Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics , 2016, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[70]  Karthikeyan Duraisamy,et al.  Machine Learning Methods for Data-Driven Turbulence Modeling , 2015 .

[71]  H. Akaike A new look at the statistical model identification , 1974 .

[72]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[73]  P. Meliga Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description , 2017, Journal of Fluid Mechanics.

[74]  Bryan Glaz,et al.  Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework , 2010 .

[75]  N. Fabbiane,et al.  Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows , 2014, 1402.1746.

[76]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[77]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[78]  Rick Chartrand,et al.  Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .

[79]  J. Templeton,et al.  Reynolds averaged turbulence modelling using deep neural networks with embedded invariance , 2016, Journal of Fluid Mechanics.

[80]  Andrew J. Majda,et al.  Physics constrained nonlinear regression models for time series , 2012 .

[81]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[82]  C. Rowley,et al.  On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities , 2002, Journal of Fluid Mechanics.

[83]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[84]  Weiwei Zhang,et al.  Efficient Method for Limit Cycle Flutter Analysis Based on Nonlinear Aerodynamic Reduced-Order Models , 2012 .

[85]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[86]  Sunil L. Kukreja,et al.  A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION , 2006 .

[87]  X. Gloerfelt Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity , 2008 .

[88]  Erik M. Bollt,et al.  Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems , 2007 .

[89]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[90]  François Gallaire,et al.  Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. , 2014, Physical review letters.

[91]  E.J. Candes Compressive Sampling , 2022 .

[92]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[93]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[94]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[95]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .