Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease

[1]  P. Couraud,et al.  The hCMEC/D3 cell line as a model of the human blood brain barrier , 2013, Fluids and Barriers of the CNS.

[2]  T. Rattei,et al.  Peripheral blood vessels are a niche for blood-borne meningococci , 2017, Virulence.

[3]  S. Marullo,et al.  Strength of Neisseria meningitidis binding to endothelial cells requires highly-ordered CD147/β2-adrenoceptor clusters assembled by alpha-actinin-4 , 2017, Nature Communications.

[4]  S. Bourdoulous,et al.  A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers , 2017, Nature Reviews Microbiology.

[5]  L. Amaral,et al.  Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action , 2017, Antibiotics.

[6]  E. Egelman,et al.  Structure of the Neisseria meningitidis Type IV pilus , 2016, Nature Communications.

[7]  B. Maier,et al.  Oxygen governs gonococcal microcolony stability by enhancing the interaction force between type IV pili. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[8]  H. Stone,et al.  Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[9]  S. Goodman,et al.  Antibodies against the majority subunit of type IV pili disperse nontypeable Haemophilus influenzae biofilms in a LuxS‐dependent manner and confer therapeutic resolution of experimental otitis media , 2015, Molecular microbiology.

[10]  J. Berry,et al.  Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives , 2014, FEMS microbiology reviews.

[11]  E. Chevet,et al.  Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization , 2014, Nature Medicine.

[12]  C. Häse,et al.  Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance , 2014, PloS one.

[13]  B. Barquera,et al.  Origin and Evolution of the Sodium -Pumping NADH: Ubiquinone Oxidoreductase , 2014, PloS one.

[14]  X. Nassif,et al.  Meningococcal interaction to microvasculature triggers the tissular lesions of purpura fulminans. , 2013, The Journal of infectious diseases.

[15]  P. Bruneval,et al.  Adhesion of Neisseria meningitidis to Dermal Vessels Leads to Local Vascular Damage and Purpura in a Humanized Mouse Model , 2013, PLoS pathogens.

[16]  B. Barquera,et al.  Insights into the mechanism of electron transfer and sodium translocation of the Na(+)-pumping NADH:quinone oxidoreductase. , 2012, Biochimica et biophysica acta.

[17]  L. Burrows Pseudomonas aeruginosa twitching motility: type IV pili in action. , 2012, Annual review of microbiology.

[18]  B. Maier,et al.  Oxygen depletion triggers switching between discrete speed modes of gonococcal type IV pili. , 2012, Biophysical journal.

[19]  K. Brandenburg,et al.  Effects of specific versus nonspecific ionic interactions on the structure and lateral organization of lipopolysaccharides. , 2011, Biophysical journal.

[20]  C. Boularan,et al.  Meningococcus Hijacks a β2-Adrenoceptor/β-Arrestin Pathway to Cross Brain Microvasculature Endothelium , 2010, Cell.

[21]  J. Molnár,et al.  Phenothiazines, bacterial efflux pumps and targeting the macrophage for enhanced killing of intracellular XDRTB. , 2010, In vivo.

[22]  Daniel R Brown,et al.  Systematic Functional Analysis Reveals That a Set of Seven Genes Is Involved in Fine-Tuning of the Multiple Functions Mediated by Type IV Pili in Neisseria meningitidis , 2010, Infection and Immunity.

[23]  P. Couraud,et al.  Meningococcal Type IV Pili Recruit the Polarity Complex to Cross the Brain Endothelium , 2009, Science.

[24]  B. Maier,et al.  High-Force Generation Is a Conserved Property of Type IV Pilus Systems , 2009, Journal of bacteriology.

[25]  S. Guadagnini,et al.  Extracellular Bacterial Pathogen Induces Host Cell Surface Reorganization to Resist Shear Stress , 2009, PLoS pathogens.

[26]  Samuel I. Miller,et al.  An inhibitor of gram-negative bacterial virulence protein secretion. , 2008, Cell host & microbe.

[27]  P. Watnick,et al.  Genetic Analysis of Vibrio cholerae Monolayer Formation Reveals a Key Role for ΔΨ in the Transition to Permanent Attachment , 2008, Journal of bacteriology.

[28]  Vladimir Pelicic Type IV pili: e pluribus unum? , 2008, Molecular microbiology.

[29]  L. Craig,et al.  Type IV pili: paradoxes in form and function. , 2008, Current opinion in structural biology.

[30]  Gerald Donnert,et al.  Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. , 2007, Cardiovascular research.

[31]  B. Greenwood,et al.  Epidemic meningitis, meningococcaemia, and Neisseria meningitidis , 2007, The Lancet.

[32]  J. Molnár,et al.  Review. Comparison of multidrug resistant efflux pumps of cancer and bacterial cells with respect to the same inhibitory agents. , 2007, In vivo.

[33]  A. Marra Targeting virulence for antibacterial chemotherapy: identifying and characterising virulence factors for lead discovery. , 2006, Drugs in R&D.

[34]  X. Nassif,et al.  PilX, a pilus‐associated protein essential for bacterial aggregation, is a key to pilus‐facilitated attachment of Neisseria meningitidis to human cells , 2004, Molecular microbiology.

[35]  O. Sokolova,et al.  Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP‐ and tyrosine kinases in invasion and inflammatory cytokine release , 2004, Cellular microbiology.

[36]  S. Levy,et al.  Antibacterial resistance worldwide: causes, challenges and responses , 2004, Nature Medicine.

[37]  M. Sheetz,et al.  A force-dependent switch reverses type IV pilus retraction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Wolfgang,et al.  Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins , 2004, The EMBO journal.

[39]  X. Nassif,et al.  Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. , 2003, Genome research.

[40]  R. Mazumder,et al.  Trifluoperazine: a broad spectrum bactericide especially active on staphylococci and vibrios. , 2001, International journal of antimicrobial agents.

[41]  P. Couraud,et al.  Activation of ErbB2 receptor tyrosine kinase supports invasion of endothelial cells by Neisseria meningitidis , 2001, The Journal of cell biology.

[42]  X. Nassif,et al.  The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Schoolnik,et al.  Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. , 1998, Science.

[44]  J. Lloret,et al.  Ionic Stress and Osmotic Pressure Induce Different Alterations in the Lipopolysaccharide of a Rhizobium meliloti Strain , 1995, Applied and environmental microbiology.

[45]  R. Sauerwein,et al.  Correlation between proinflammatory cytokines and antiinflammatory mediators and the severity of disease in meningococcal infections. , 1995, The Journal of infectious diseases.

[46]  X. Nassif,et al.  Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells , 1993, Molecular microbiology.

[47]  P. Brandtzaeg,et al.  Brief Definitive Report the Complex Pattern of Cytokines in Serum from Patients with Meningococcal Septic Shock Association between Interleukin 6, Interleukin 1, and Fatal Outcome , 2022 .

[48]  E. Girardin,et al.  Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. , 1988, The New England journal of medicine.

[49]  M. Achtman,et al.  Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A , 1988, The Journal of experimental medicine.

[50]  P. Sparling,et al.  Isolation by streptonigrin enrichment and characterization of a transferrin-specific iron uptake mutant of Neisseria meningitidis. , 1987, Microbial pathogenesis.