The Michaelis-Menten-Stueckelberg Theorem

We study chemical reactions with complex mechanisms under two assumptions: (i) intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS) and (ii) they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE). Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without microreversibility, when the detailed balance is not applicable. Even though QE and QSS produce useful approximations by themselves, only the combination of these assumptions can render the possibility beyond the “rarefied gas” limit or the “molecular chaos” hypotheses. We do not use any a priori form of the kinetic law for the chemical reactions and describe their equilibria by thermodynamic relations. The transformations of the intermediate compounds can be described by the Markov kinetics because of their low density (low density of elementary events). This combination of assumptions was introduced by Michaelis and Menten in 1913. In 1952, Stueckelberg used the same assumptions for the gas kinetics and produced the remarkable semi-detailed balance relations between collision rates in the Boltzmann equation that are weaker than the detailed balance conditions but are still sufficient for the Boltzmann H-theorem to be valid. Our results are obtained within the Michaelis-Menten-Stueckelbeg conceptual framework.

[1]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[2]  W. Klonowski Simplifying principles for chemical and enzyme reaction kinetics. , 1983, Biophysical chemistry.

[3]  A. I. Vol'pert,et al.  Analysis in classes of discontinuous functions and equations of mathematical physics , 1985 .

[4]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[5]  Carlo Cercignani,et al.  On the H-theorem for polyatomic gases , 1981 .

[6]  Rutherford Aris,et al.  Introduction to the Analysis of Chemical Reactors , 1965 .

[7]  G. Briggs,et al.  A Note on the Kinetics of Enzyme Action. , 1925, The Biochemical journal.

[9]  Sauro Succi INVARIANT MANIFOLDS FOR PHYSICAL AND CHEMICAL KINETICS (Lecture Notes in Physics 660) By A. N. G ORBAN and I. V. K ARLIN : 495 pp., £77, ISBN 3-540-22684-2 (Springer, Heidelberg, 2005) , 2006 .

[10]  Kun-Mao Chao,et al.  Spanning trees and optimization problems , 2004, Discrete mathematics and its applications.

[11]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[12]  Friedrich G. Helfferich Systematic approach to elucidation of multistep reaction networks , 1989 .

[13]  Banghe Li,et al.  Quasi-steady-state laws in enzyme kinetics. , 2008, The journal of physical chemistry. A.

[14]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[15]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[16]  T. Morimoto Markov Processes and the H -Theorem , 1963 .

[17]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[18]  Herschel Rabitz,et al.  A general analysis of exact lumping in chemical kinetics , 1989 .

[19]  J. A. Christiansen The Elucidation of Reaction Mechanisms by the Method of Intermediates in Quasi-Stationary Concentrations , 1953 .

[20]  Sten Bay Jørgensen,et al.  Optimal component lumping: Problem formulation and solution techniques , 2008, Comput. Chem. Eng..

[21]  Martin Feinberg,et al.  On chemical kinetics of a certain class , 1972 .

[22]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[23]  Alexander N Gorban,et al.  Uniqueness of thermodynamic projector and kinetic basis of molecular individualism , 2003, cond-mat/0309638.

[24]  Alexander N. Gorban,et al.  Description of nonisothermal reactions in terms of Marcelin-de-Donder kinetics and its generalizations , 1982 .

[25]  Moshe Y. Vardi,et al.  Dynamic and static limitation in multiscale reaction networks, revisited , 2007, physics/0703278.

[26]  G. S. Yablonskii,et al.  Non-linear steady-state kinetics of complex catalytic reactions: Theory and applications , 1997 .

[27]  Richard G. Compton,et al.  Kinetic models of catalytic reactions , 1991 .

[28]  P. Pearce PRINCIPLES OF STATISTICAL MECHANICS , 1998 .

[29]  R. Jackson,et al.  General mass action kinetics , 1972 .

[30]  Keith J. Laidler,et al.  The Current Status of Eyring's Rate Theory , 2007 .

[31]  Katalin M. Hangos Engineering Model Reduction and Entropy-based Lyapunov Functions in Chemical Reaction Kinetics , 2010, Entropy.

[32]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .

[33]  Dirk Lebiedz,et al.  Entropy-Related Extremum Principles for Model Reduction of Dissipative Dynamical Systems , 2010, Entropy.

[34]  M. Feinberg Complex balancing in general kinetic systems , 1972 .

[35]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[36]  Bruno Sportisse,et al.  Partitioning techniques and lumping computation for reducing chemical kinetics: APLA: an automatic partitioning and lumping algorithm , 2002 .

[37]  F. Battelli,et al.  Singular perturbation theory for open enzyme reaction networks. , 1986, IMA journal of mathematics applied in medicine and biology.

[38]  Alexander N. Gorban,et al.  Entropy: The Markov Ordering Approach , 2010, Entropy.

[39]  N. Kampen,et al.  Nonlinear irreversible processes , 1973 .

[40]  Alexander N Gorban,et al.  Quasi-equilibrium closure hierarchies for the Boltzmann equation , 2003, cond-mat/0305599.

[41]  J. Gibbs Elementary Principles in Statistical Mechanics , 1902 .

[42]  V. N. Orlov,et al.  The macrodynamics of open systems and the variational principle of the local potential—I , 1984 .

[43]  W. Heitler,et al.  The quantum theory of radiation , 1936 .

[44]  Herschel Rabitz,et al.  The Effect of Lumping and Expanding on Kinetic Differential Equations , 1997, SIAM J. Appl. Math..

[45]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[47]  Douglas Henderson,et al.  Advances in Chemical Physics: Chemical Dynamics: Papers in Honor of Henry Eyring , 1971 .

[48]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[49]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[50]  Grmela Thermodynamics of driven systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  N. Semenoff On the Kinetics of Complex Reactions , 1939 .

[52]  Karlin,et al.  Scattering rates versus moments: Alternative Grad equations. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Alexander N Gorban,et al.  Asymptotology of chemical reaction networks , 2009, 0903.5072.

[54]  Danail Bonchev,et al.  Chemical Reaction Networks: A Graph-Theoretical Approach , 1996 .

[55]  Patrick Ilg,et al.  Corrections and Enhancements of Quasi-Equilibrium States , 2001 .

[56]  Martin J. Klein,et al.  Principle of Detailed Balance , 1955 .

[57]  A. B. Vasil’eva ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO CERTAIN PROBLEMS INVOLVING NON-LINEAR DIFFERENTIAL EQUATIONS CONTAINING A?SMALL PARAMETER MULTIPLYING THE HIGHEST DERIVATIVES , 1963 .

[58]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[59]  James Wei,et al.  The Structure and Analysis of Complex Reaction Systems , 1962 .

[60]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[61]  F. Hoppensteadt Singular perturbations on the infinite interval , 1966 .

[62]  Michael Satosi Watanabe,et al.  Symmetry of physical laws. Part I : symmetry in space-time and balance theorems Symmetry in space-time and balance theorems. , 1953 .

[63]  O. Radulescu,et al.  Dynamic and static limitation in reaction networks , revisited , 2007 .

[64]  Kenneth B. Bischoff,et al.  Lumping strategy. II: A system theoretic approach , 1987 .

[65]  Katalin M. Hangos,et al.  Thermodynamic approach to the structural stability of process plants , 1999 .

[66]  M. Bodenstein,et al.  Eine Theorie der photochemischen Reaktionsgeschwindigkeiten , 1913 .

[67]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .

[68]  A. Gorban,et al.  Invariant Manifolds for Physical and Chemical Kinetics , 2005 .

[69]  R. Balian,et al.  Dissipation in many-body systems: A geometric approach based on information theory , 1986 .