Interval Type-2 Fuzzy Logic Dynamic Mutation and Crossover Parameter Adaptation in a Fuzzy Differential Evolution Method

In this paper we consider the Differential Evolution (DE) algorithm by using fuzzy logic to make dynamic changes in the mutation (F) and crossover (Cr) parameters separately, and this modification of the algorithm we can call it the Fuzzy Differential Evolution algorithm (FDE). A comparison of the FDE algorithm using type-1 fuzzy logic and interval type-2 fuzzy logic is performed for a set of Benchmark functions.

[1]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[2]  Oscar Castillo,et al.  Parallel Particle Swarm Optimization with Parameters Adaptation Using Fuzzy Logic , 2012, MICAI.

[3]  Oscar Castillo,et al.  An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms , 2011, Appl. Soft Comput..

[4]  Efrén Mezura-Montes,et al.  Self-adaptive and Deterministic Parameter Control in Differential Evolution for Constrained Optimization , 2009 .

[5]  Sung-Kwun Oh,et al.  Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights , 2012, Eng. Appl. Artif. Intell..

[6]  Oscar Castillo,et al.  Particle Swarm Optimization with Dynamic Parameter Adaptation Using Fuzzy Logic for Benchmark Mathematical Functions , 2013, Recent Advances on Hybrid Intelligent Systems.

[7]  X. Yao,et al.  Fast evolutionary algorithms , 2003 .

[8]  Oscar Castillo,et al.  Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions , 2013, 2013 World Congress on Nature and Biologically Inspired Computing.

[9]  Bassem Jarboui,et al.  A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics , 2011, Inf. Sci..

[10]  Oscar Castillo,et al.  Bio-inspired Optimization Methods on Graphic Processing Unit for Minimization of Complex Mathematical Functions , 2013, Recent Advances on Hybrid Intelligent Systems.

[11]  Oscar Castillo,et al.  A fuzzy differential evolution method with dynamic adaptation of parameters for the optimization of fuzzy controllers , 2014, 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW).

[12]  Oscar Castillo,et al.  Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[13]  Janez Brest,et al.  Differential evolution for parameterized procedural woody plant models reconstruction , 2011, Appl. Soft Comput..

[14]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[15]  Xingyu Wang,et al.  ssessment of human operator functional state using a novel differential volution optimization based adaptive fuzzy model , 2011 .

[16]  A. H. Jahanmiri,et al.  Eliciting transparent fuzzy model using differential evolution , 2008, Appl. Soft Comput..

[17]  Jerry M. Mendel,et al.  On answering the question "Where do I start in order to solve a new problem involving interval type-2 fuzzy sets?" , 2009, Inf. Sci..

[18]  Shiji Song,et al.  hybrid differential evolution algorithm for job shop scheduling problems with xpected total tardiness criterion , 2013 .