MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature.

We extend the 2D MXene family into the boride world, namely, MBenes. High-throughput calculations screen twelve MBenes with excellent stability. Among them, 2D MnB MBene exhibits robust metallic ferromagnetism (∼3.2 μB per Mn atom) and high Curie temperature (345 K). After functionalization with the -F and -OH groups, the ferromagnetic ground state of 2D MnB is well preserved. The Curie temperature is increased to 405 and 600 K, respectively, providing a novel and feasible strategy to tailor the TC of 2D magnetic materials.

[1]  S. Lany,et al.  Computationally Driven Two-Dimensional Materials Design: What Is Next? , 2017, ACS nano.

[2]  R. Kaner,et al.  Rediscovering the Crystal Chemistry of Borides , 2017, Advanced materials.

[3]  Yun Zhang,et al.  Magnetic, recyclable PtyCo1−y/Ti3C2X2 (X = O, F) catalyst: a facile synthesis and enhanced catalytic activity for hydrogen generation from the hydrolysis of ammonia borane , 2017 .

[4]  Xianping Chen,et al.  Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. , 2017, Nanoscale.

[5]  Mohammad Khazaei,et al.  Electronic properties and applications of MXenes: a theoretical review , 2017, 1702.07442.

[6]  Junyan Liu,et al.  Computational search for two-dimensional intrinsic half-metals in transition-metal dinitrides , 2017 .

[7]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[8]  P. Nachtigall,et al.  New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity , 2016 .

[9]  Cheng-Cheng Liu,et al.  Rise of silicene: A competitive 2D material , 2016 .

[10]  Y. Kawazoe,et al.  Ferromagnetic and Half-Metallic FeC2 Monolayer Containing C2 Dimers. , 2016, ACS applied materials & interfaces.

[11]  B. Pathak,et al.  TM@gt-C3N3 monolayers: high-temperature ferromagnetism and high anisotropy , 2016 .

[12]  Linggang Zhu,et al.  MXene: a promising photocatalyst for water splitting , 2016 .

[13]  Xiaojun Wu,et al.  Mn2C monolayer: a 2D antiferromagnetic metal with high Néel temperature and large spin-orbit coupling. , 2016, Nanoscale.

[14]  Xiaoshuang Chen,et al.  The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. , 2016, Nanoscale.

[15]  A. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[16]  Kehui Wu,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[17]  Hui‐Ming Cheng,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[18]  M. Shatruk,et al.  Investigation of Magnetic Properties and Electronic Structure of Layered‐Structure Borides AlT2B2 (T: Fe, Mn, Cr) and AlFe2‐xMnxB2. , 2015 .

[19]  Linggang Zhu,et al.  Microscopic origin of MXenes derived from layered MAX phases , 2015 .

[20]  Y. Gogotsi,et al.  Synthesis and characterization of two-dimensional Nb4C3 (MXene). , 2014, Chemical communications.

[21]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[22]  Jijun Zhao,et al.  From Boron Cluster to Two-Dimensional Boron Sheet on Cu(111) Surface: Growth Mechanism and Hole Formation , 2013, Scientific Reports.

[23]  Y. Kawazoe,et al.  The Intrinsic Ferromagnetism in a MnO2 Monolayer. , 2013, The journal of physical chemistry letters.

[24]  P. Kent,et al.  Hybrid Density Functional Study of Structural and Electronic Properties of Functionalized \ce{Ti_{n+1}X_n} (X= C, N) monolayers , 2013, 1306.6936.

[25]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[26]  B. Yakobson,et al.  Probing the synthesis of two-dimensional boron by first-principles computations. , 2013, Angewandte Chemie.

[27]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[28]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[29]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[30]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[31]  Qiang Sun,et al.  Magnetism of phthalocyanine-based organometallic single porous sheet. , 2011, Journal of the American Chemical Society.

[32]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[33]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Goldoni,et al.  Epitaxial growth of MgB2(0001) thin films on magnesium single-crystals , 2004 .

[35]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  H. Ohno,et al.  Transport properties and origin of ferromagnetism in (Ga,Mn)As , 1998 .

[38]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[39]  K. Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[43]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[44]  Kelly,et al.  First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. , 1990, Physical review. B, Condensed matter.

[45]  H. Holleck,et al.  Aufbau und Wirkung innerer Grenzflächen in TiC-TiB2-B4C-SiC-Viellagenschichten (structure and effects of interfaces in TiC-TiB2-B4C-SiC nanosize multilayer systems) , 1996 .

[46]  M. J. Crooks,et al.  Floating Magnets and the Meissner Effect , 1971 .