Higher spin JT gravity and a matrix model dual

[1]  Cynthia Yan Crosscap contribution to late-time two-point correlators , 2022, Journal of High Energy Physics.

[2]  Luca V. Iliesiu,et al.  Alpha states demystified — towards microscopic models of AdS2 holography , 2022, Journal of High Energy Physics.

[3]  Thomas Hartman,et al.  Semiclassical 3D gravity as an average of large-c CFTs , 2022, Journal of High Energy Physics.

[4]  Jean-Marc Schlenker,et al.  No ensemble averaging below the black hole threshold , 2022, Journal of High Energy Physics.

[5]  Clifford V. Johnson The Microstate Physics of JT Gravity and Supergravity , 2022, 2201.11942.

[6]  Luca V. Iliesiu,et al.  Gravity factorized , 2021, Journal of High Energy Physics.

[7]  D. Liska,et al.  Non-Gaussianities in the statistical distribution of heavy OPE coefficients and wormholes , 2021, Journal of High Energy Physics.

[8]  D. Stanford,et al.  Subleading Weingartens , 2021, Journal of High Energy Physics.

[9]  Luca V. Iliesiu,et al.  The volume of the black hole interior at late times , 2021, Journal of High Energy Physics.

[10]  J. Kruthoff,et al.  Gravity without averaging , 2021, SciPost Physics.

[11]  X. Bekaert Notes on Higher-Spin Diffeomorphisms , 2021, Universe.

[12]  S. Shenker,et al.  Comments on wormholes and factorization , 2021, 2107.13130.

[13]  Clifford V. Johnson Quantum Gravity Microstates from Fredholm Determinants. , 2021, Physical review letters.

[14]  D. Das,et al.  Higher spin wormholes from modular bootstrap , 2021, Journal of High Energy Physics.

[15]  Luca V. Iliesiu,et al.  Classifying boundary conditions in JT gravity: from energy-branes to α-branes , 2021, Journal of High Energy Physics.

[16]  S. Shenker,et al.  Wormholes without averaging , 2021, Journal of High Energy Physics.

[17]  T. Prosen,et al.  Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum Chaos. , 2021, Physical review letters.

[18]  S. Datta The Schwarzian sector of higher spin CFTs , 2021, Journal of High Energy Physics.

[19]  G. Turiaci,et al.  2D dilaton-gravity, deformations of the minimal string, and matrix models , 2020, Classical and Quantum Gravity.

[20]  Jordan S. Cotler,et al.  AdS3 gravity and random CFT , 2020, Journal of High Energy Physics.

[21]  J. de Boer,et al.  Random statistics of OPE coefficients and Euclidean wormholes , 2020, Classical and Quantum Gravity.

[22]  G. Turiaci,et al.  Dilaton-gravity, deformations of the minimal string, and matrix models , 2020 .

[23]  B. Swingle,et al.  An exponential ramp in the quadratic Sachdev-Ye-Kitaev model , 2020, 2006.15152.

[24]  E. Witten Matrix models and deformations of JT gravity , 2020, Proceedings of the Royal Society A.

[25]  G. Turiaci,et al.  The path integral of 3D gravity near extremality; or, JT gravity with defects as a matrix integral , 2020, 2006.11317.

[26]  Alexander Thomas Higher Complex Structures and Flat Connections , 2020, 2005.14445.

[27]  E. Witten Volumes And Random Matrices , 2020, 2004.05183.

[28]  Anna Wienhard,et al.  Flows on the $$\mathbf{PGL(V)}$$PGL(V)-Hitchin Component , 2020 .

[29]  E. Witten,et al.  JT gravity and the ensembles of random matrix theory , 2019, Advances in Theoretical and Mathematical Physics.

[30]  D. Stanford,et al.  Matrix ensembles with global symmetries and ’t Hooft anomalies from 2d gauge theory , 2019, 1912.12285.

[31]  V. Fock,et al.  Higher Complex Structures , 2019 .

[32]  Luca V. Iliesiu On 2D gauge theories in Jackiw-Teitelboim gravity , 2019, 1909.05253.

[33]  Luca V. Iliesiu,et al.  An exact quantization of Jackiw-Teitelboim gravity , 2019, Journal of High Energy Physics.

[34]  Anna Wienhard AN INVITATION TO HIGHER TEICHMÜLLER THEORY , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[35]  S. Shenker,et al.  JT gravity as a matrix integral , 2019, 1903.11115.

[36]  P. Narayan,et al.  Chaos in three-dimensional higher spin gravity , 2019, Journal of High Energy Physics.

[37]  Yi Huang,et al.  McShane Identities for Higher Teichmüller Theory and the Goncharov–Shen Potential , 2019, Memoirs of the American Mathematical Society.

[38]  Jennifer Lin Entanglement entropy in Jackiw-Teitelboim Gravity , 2018, 1807.06575.

[39]  H. Verschelde,et al.  The Schwarzian theory — a Wilson line perspective , 2018, Journal of High Energy Physics.

[40]  S. Shenker,et al.  A semiclassical ramp in SYK and in gravity , 2018, 1806.06840.

[41]  D. Grumiller,et al.  Towards a bulk description of higher spin SYK , 2018, 1802.01562.

[42]  N. Afkhami-Jeddi,et al.  Constraints on higher spin CFT2 , 2017, 1707.07717.

[43]  Lotte Hollands,et al.  Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials , 2017, 1710.04438.

[44]  E. Witten,et al.  Fermionic localization of the schwarzian theory , 2017, Journal of High Energy Physics.

[45]  Anna Wienhard,et al.  Flows on the PSL(V)-Hitchin component , 2017, 1709.03580.

[46]  G. Turiaci,et al.  Towards a 2d QFT analog of the SYK model , 2017, 1701.00528.

[47]  Jordan S. Cotler,et al.  Black holes and random matrices , 2016, 1611.04650.

[48]  J. Maldacena,et al.  Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space , 2016, 1606.01857.

[49]  Eric Perlmutter Bounding the space of holographic CFTs with chaos , 2016, 1602.08272.

[50]  J. Boer,et al.  Boundary conditions and partition functions in higher spin AdS3/CFT2 , 2014, 1407.3844.

[51]  S. Fredenhagen,et al.  Metric- and frame-like higher-spin gauge theories in three dimensions , 2014, 1408.2712.

[52]  V. Filev,et al.  On the phase structure of commuting matrix models , 2014, 1402.2476.

[53]  F. Bonahon,et al.  Parameterizing Hitchin components , 2012, 1209.3526.

[54]  A. Neitzke,et al.  Spectral Networks and Fenchel–Nielsen Coordinates , 2013, 1312.2979.

[55]  K. Alkalaev On higher spin extension of the Jackiw–Teitelboim gravity model , 2013, 1311.5119.

[56]  G. Moore,et al.  Spectral Networks , 2012, 1204.4824.

[57]  G. Moore,et al.  Spectral Networks and Snakes , 2012, 1209.0866.

[58]  E. Hijano,et al.  Unitarity bounds in AdS3 higher spin gravity , 2012, 1202.4467.

[59]  R. Gopakumar,et al.  Conical defects in higher spin theories , 2011, 1111.3381.

[60]  Thomas Hartman,et al.  Higher spin realization of the DS/CFT correspondence , 2011, 1108.5735.

[61]  Eric Perlmutter,et al.  Spacetime geometry in higher spin gravity , 2011, 1106.4788.

[62]  Per Kraus,et al.  Higher spin black holes , 2011, 1103.4304.

[63]  Thomas Hartman,et al.  Symmetries of holographic minimal models , 2011, 1101.2910.

[64]  A. Maloney,et al.  Higher spin theories in AdS3 and a gravitational exclusion principle , 2010, 1012.0598.

[65]  R. Gopakumar,et al.  An AdS_3 Dual for Minimal Model CFTs , 2010, 1011.2986.

[66]  S. Pfenninger,et al.  Asymptotic W-symmetries in three-dimensional higher-spin gauge theories , 2011 .

[67]  S. Pfenninger,et al.  Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields , 2010, 1008.4744.

[68]  M. Henneaux,et al.  Nonlinear W∞ as asymptotic symmetry of three-dimensional higher spin AdS gravity , 2010, 1008.4579.

[69]  M. Burger,et al.  Higher Teichmüller Spaces: from SL(2,R) to other Lie groups , 2010, 1004.2894.

[70]  S. Hartnoll,et al.  Multi-matrix models and emergent geometry , 2008, 0805.4658.

[71]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[72]  B. Eynard,et al.  Invariants of algebraic curves and topological expansion , 2007, math-ph/0702045.

[73]  M. Rigol,et al.  Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. , 2006, Physical review letters.

[74]  F. Labourie,et al.  Cross ratios and identities for higher Teichmüller-Thurston theory , 2006, math/0611245.

[75]  M. Mirzakhani Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces , 2006 .

[76]  D. Berenstein,et al.  All loop BMN state energies from matrices , 2005, hep-th/0509015.

[77]  D. Berenstein Large N BPS states and emergent quantum gravity , 2005, hep-th/0507203.

[78]  J. Maldacena,et al.  Wormholes in AdS , 2004, hep-th/0401024.

[79]  A. Goncharov,et al.  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[80]  P. Seidel Lectures on Four-Dimensional Dehn Twists , 2003, math/0309012.

[81]  M.A.Vasiliev Nonlinear Equations for Symmetric Massless Higher Spin Fields in $(A)dS_d$ , 2003, hep-th/0304049.

[82]  A. Polyakov,et al.  AdS dual of the critical O(N) vector model , 2002, hep-th/0210114.

[83]  H. Kim The symplectic global coordinates on the moduli space of real projective structures , 1999 .

[84]  S. Govindarajan Higher dimensional uniformisation and W-geometry , 1994, hep-th/9412078.

[85]  J. Gomis,et al.  Finite W3 transformations in a multi-time approach , 1994, hep-th/9409024.

[86]  W. Goldman,et al.  Convex real projective structures on closed surfaces are closed , 1993 .

[87]  M. Niedermaier Irrational free field resolutions forW(sl(n)) and extended Sugawara construction , 1992 .

[88]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .

[89]  M. Niedermaier W(sl(n)) : Existence, Cartan Basis and Infinite Abelian Subalgebras , 1992 .

[90]  E. Witten On quantum gauge theories in two dimensions , 1991 .

[91]  R. Blumenhagen,et al.  W-algebras with two and three generators , 1991 .

[92]  A. Morozov,et al.  A note on W3 algebra , 1990 .

[93]  M. Vasiliev Consistent equations for interacting gauge fields of all spins in 3+1 dimensions , 1990 .

[94]  W. Goldman Convex real projective structures on compact surfaces , 1990 .

[95]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[96]  W. Goldman Invariant functions on Lie groups and Hamiltonian flows of surface group representations , 1986 .

[97]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[98]  S. Wolpert ON THE WEIL-PETERSSON GEOMETRY OF THE MODULI SPACE OF CURVES , 1985 .

[99]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.