Bayesian Phylogenetic Inference Using a Combinatorial Sequential Monte Carlo Method
暂无分享,去创建一个
Arnaud Doucet | Alexandre Bouchard-Côté | A. Doucet | A. Bouchard-Côté | Liangliang Wang | Liangliang Wang
[1] Allan C. Wilson,et al. Mitochondrial DNA sequences of primates: Tempo and mode of evolution , 2005, Journal of Molecular Evolution.
[2] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[3] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[4] Nan Yu,et al. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs: Correction , 2002, BMC Bioinformatics.
[5] M. Suchard,et al. Joint Bayesian estimation of alignment and phylogeny. , 2005, Systematic biology.
[6] Maurizio Dapor. Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.
[7] A. G. Pedersen,et al. Computational Molecular Evolution , 2013 .
[8] Marc A Suchard,et al. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data. , 2010, The annals of applied statistics.
[9] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[10] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[11] Ian Holmes,et al. Evolutionary HMMs: a Bayesian approach to multiple alignment , 2001, Bioinform..
[12] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .
[13] Yee Whye Teh,et al. Bayesian Agglomerative Clustering with Coalescents , 2007, NIPS.
[14] M Chévremont,et al. Mitochondrial DNA , 2009, Encyclopedia of Biometrics.
[15] J. Huelsenbeck,et al. Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. , 2008, Systematic biology.
[16] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[17] Ziheng Yang,et al. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.
[18] David H. Mathews,et al. Quantifying the Impact of Dependent Evolution among Sites in Phylogenetic Inference , 2010, Systematic biology.
[19] Nick Whiteley,et al. Forest resampling for distributed sequential Monte Carlo , 2014, Stat. Anal. Data Min..
[20] B. Larget,et al. Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .
[21] Kai Yang,et al. Markov Chain Monte Carlo Algorithms , 2014, Encyclopedia of Social Network Analysis and Mining.
[22] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[23] Alexei J Drummond,et al. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.
[24] Yee Whye Teh,et al. An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering , 2008, NIPS.
[25] J. Halton. Sequential Monte Carlo , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[26] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[27] Sandhya Dwarkadas,et al. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference , 2002, Bioinform..
[28] D. Morrison. Multiple sequence alignment for phylogenetic purposes , 2006 .
[29] Joshua S. Paul,et al. An Accurate Sequentially Markov Conditional Sampling Distribution for the Coalescent With Recombination , 2011, Genetics.
[30] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[31] Donna B. Stoddard,et al. Getting IT right. , 2004, Harvard business review.
[32] Peter Norvig,et al. Artificial Intelligence: A Modern Approach , 1995 .
[33] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[34] Serita M. Nelesen,et al. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. , 2012, Systematic biology.
[35] Geoffrey B. West,et al. One rate to rule them all , 2004 .
[36] Tandy J. Warnow,et al. PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences , 2015, J. Comput. Biol..
[37] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[38] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[39] Daniel L. Ayres,et al. BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics , 2011, Systematic biology.
[40] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[41] Rodrigo Lopez,et al. Clustal W and Clustal X version 2.0 , 2007, Bioinform..
[42] M. De Iorio,et al. Importance sampling on coalescent histories. I , 2004, Advances in Applied Probability.
[43] M. Suchard,et al. Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.
[44] S. Höhna. Bayesian Phylogenetic Inference , 2011 .
[45] D. Robinson,et al. Comparison of phylogenetic trees , 1981 .
[46] H. Kishino,et al. Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.
[47] Alexei J Drummond,et al. Guided tree topology proposals for Bayesian phylogenetic inference. , 2012, Systematic biology.
[48] J. Geweke,et al. Getting It Right , 2004 .
[49] Dilan Görür,et al. Scalable Inference on Kingman's Coalescent using Pair Similarity , 2012, AISTATS.
[50] D. Penny. Inferring Phylogenies.—Joseph Felsenstein. 2003. Sinauer Associates, Sunderland, Massachusetts. , 2004 .
[51] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[52] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[53] Alexei J. Drummond,et al. Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..
[54] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.
[55] Faming Liang,et al. Phylogenetic tree construction using sequential stochastic approximation Monte Carlo , 2008, Biosyst..
[56] Luke Tierney. Markov Chain Monte Carlo Algorithms , 2006 .
[57] Robert C. Griffiths,et al. Monte Carlo inference methods in population genetics , 1996 .
[58] Asger Hobolth,et al. SIMULATION FROM ENDPOINT-CONDITIONED, CONTINUOUS-TIME MARKOV CHAINS ON A FINITE STATE SPACE, WITH APPLICATIONS TO MOLECULAR EVOLUTION. , 2009, The annals of applied statistics.
[59] J. R. Stauffer,et al. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. , 1995, Molecular phylogenetics and evolution.
[60] Michael I. Jordan,et al. Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.
[61] Serita M. Nelesen,et al. Rapid and Accurate Large-Scale Coestimation of Sequence Alignments and Phylogenetic Trees , 2009, Science.
[62] Nan Yu,et al. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.
[63] B. Rannala,et al. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.
[64] Maurits J. J. Dijkstra,et al. Multiple Sequence Alignment. , 2017, Methods in molecular biology.
[65] Michael Defoin-Platel,et al. Clock-constrained tree proposal operators in Bayesian phylogenetic inference , 2008, 2008 8th IEEE International Conference on BioInformatics and BioEngineering.
[66] Benjamin D. Redelings,et al. BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny , 2006, Bioinform..
[67] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[68] John P. Huelsenbeck,et al. MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..