Method for Classification of Snowflakes Based on Images by a Multi-Angle Snowflake Camera Using Convolutional Neural Networks

AbstractTaking advantage of the recent developments in machine learning, we propose an approach to automatic winter hydrometeor classification based on utilization of convolutional neural networks ...

[1]  Branislav M. Notaros,et al.  Visual Hull Method for Realistic 3D Particle Shape Reconstruction Based on High-Resolution Photographs of Snowflakes in Free Fall from Multiple Views , 2017 .

[2]  Daniel Svozil,et al.  Introduction to multi-layer feed-forward neural networks , 1997 .

[3]  Alexis Berne,et al.  Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera , 2017 .

[4]  Branislav M. Notaros,et al.  Efficient and Accurate Computational Electromagnetics Approach to Precipitation Particle Scattering Analysis Based on Higher-Order Method of Moments Integral Equation Modeling , 2015 .

[5]  Jordi Figueras i Ventura,et al.  Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach , 2016 .

[6]  V. Bringi,et al.  Variations in Snow Crystal Riming and ZDR: A Case Analysis , 2018 .

[7]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[8]  Alexander V. Ryzhkov,et al.  Winter Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer Observations in Central Oklahoma , 2011 .

[9]  Vadim V. Romanuke Appropriate Number of Standard 2 × 2 Max Pooling Layers and Their Allocation in Convolutional Neural Networks for Diverse and Heterogeneous Datasets , 2017 .

[10]  Min-Jeong Kim,et al.  Single scattering parameters of randomly oriented snow particles at microwave frequencies , 2006 .

[11]  E. Weingartner,et al.  An Analysis of Accreted Drop Sizes and Mass on Rimed Snow Crystals , 1994 .

[12]  Branislav M. Notaros,et al.  Dual-Polarized Radar and Surface Observations of a Winter Graupel Shower with Negative Zdr Column , 2017 .

[13]  Jussi Leinonen,et al.  Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid Models , 2011 .

[14]  A. Korolev,et al.  A Technique for Habit Classification of Cloud Particles , 2000 .

[15]  Andrew J. Newman,et al.  Presenting the Snowflake Video Imager (SVI) , 2009 .

[16]  C. Magono,et al.  Meteorological Classification of Natural Snow Crystals , 1966 .

[17]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[18]  Dmitri Moisseev,et al.  Recent advances in classification of observations from dual polarization weather radars , 2013 .

[19]  Devis Tuia,et al.  Hydrometeor classification from two-dimensional video disdrometer data , 2014 .

[20]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[21]  V. Bringi,et al.  Accurate Characterization of Winter Precipitation Using Multi-Angle Snowflake Camera, Visual Hull, Advanced Scattering Methods and Polarimetric Radar , 2016 .

[22]  K. Libbrecht Physical Dynamics of Ice Crystal Growth , 2017 .

[23]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .