Unambiguous conjunctive grammars over a one-symbol alphabet
暂无分享,去创建一个
[1] Alexander Okhotin,et al. Parsing Boolean grammars over a one-letter alphabet using online convolution , 2012, Theor. Comput. Sci..
[2] Alexander Okhotin,et al. Conjunctive Grammars , 2001, J. Autom. Lang. Comb..
[3] Alexander Okhotin. Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..
[4] Jean Berstel,et al. Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.
[5] Alexander Okhotin,et al. On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..
[6] Oscar H. Ibarra,et al. Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..
[7] Artur Jez,et al. One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2011, Theory of Computing Systems.
[8] Panos Rondogiannis,et al. Well-founded semantics for Boolean grammars , 2009, Inf. Comput..
[9] Artur Jez. Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.
[10] Artur Jez,et al. Computational completeness of equations over sets of natural numbers , 2014, Inf. Comput..
[11] Alexander Okhotin,et al. On the expressive power of univariate equations over sets of natural numbers , 2012, Inf. Comput..
[12] Artur Jez,et al. Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.
[13] Alexander Okhotin,et al. Decision problems for language equations , 2010, J. Comput. Syst. Sci..
[14] Pierre McKenzie,et al. The Complexity of Membership Problems for Circuits Over Sets of Natural Numbers , 2007, computational complexity.
[15] Artur Jez,et al. On the Number of Nonterminal Symbols in Unambiguous Conjunctive Grammars , 2018, Fundam. Informaticae.
[16] Sheng Yu,et al. on Sparse Languages L such that LL = Sigma , 1994, Discret. Appl. Math..
[17] Alexander Okhotin,et al. Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..
[18] Arto Salomaa,et al. Systolic trellis automatat , 1984 .
[19] Alexander Okhotin. Unambiguous Boolean grammars , 2007, Inf. Comput..
[20] Markus Lohrey,et al. Algorithmics on SLP-compressed strings: A survey , 2012, Groups Complex. Cryptol..
[21] Alexander Okhotin. Boolean grammars , 2004, Inf. Comput..
[22] Artur Jez,et al. Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.
[23] Alexander Okhotin. Homomorphisms Preserving Linear Conjunctive Languages , 2008, J. Autom. Lang. Comb..
[24] Véronique Terrier. Recognition of Linear-Slender Context-Free Languages by Real Time One-Way Cellular Automata , 2015, Automata.
[25] Charles R. Dyer,et al. One-Way Bounded Cellular Automata , 1980, Inf. Control..
[26] Jeffrey Shallit,et al. Automatic Sequences: Theory, Applications, Generalizations , 2003 .
[27] Michal Kunc,et al. What Do We Know About Language Equations? , 2007, Developments in Language Theory.
[28] Michael Kaminski,et al. LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata , 2016, J. Comput. Syst. Sci..
[29] Véronique Terrier,et al. On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..
[30] Jean Berstel. Sur la densité asymptotique de langages formels , 1972, ICALP.
[31] Alexander Okhotin,et al. An extension of context-free grammars with one-sided context specifications , 2014, Inf. Comput..