Unambiguous conjunctive grammars over a one-symbol alphabet

Abstract It is demonstrated that unambiguous conjunctive grammars over a unary alphabet Σ = { a } have non-trivial expressive power, and that their basic properties are undecidable. The key result is that for every base of positional notation, k ⩾ 11 , and for every one-way real-time cellular automaton operating over the alphabet of base-k digits between ⌊ k + 9 4 ⌋ and ⌊ k + 1 2 ⌋ , the language of all strings a n with the base-k representation of the form 1 w 1 , where w is accepted by the automaton, is described by an unambiguous conjunctive grammar. Another encoding is used to simulate a cellular automaton in a unary language containing almost all strings. These constructions are used to show that for every fixed unambiguous conjunctive language L 0 , testing whether a given unambiguous conjunctive grammar generates L 0 is undecidable.

[1]  Alexander Okhotin,et al.  Parsing Boolean grammars over a one-letter alphabet using online convolution , 2012, Theor. Comput. Sci..

[2]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[3]  Alexander Okhotin Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..

[4]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[5]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[6]  Oscar H. Ibarra,et al.  Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..

[7]  Artur Jez,et al.  One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2011, Theory of Computing Systems.

[8]  Panos Rondogiannis,et al.  Well-founded semantics for Boolean grammars , 2009, Inf. Comput..

[9]  Artur Jez Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.

[10]  Artur Jez,et al.  Computational completeness of equations over sets of natural numbers , 2014, Inf. Comput..

[11]  Alexander Okhotin,et al.  On the expressive power of univariate equations over sets of natural numbers , 2012, Inf. Comput..

[12]  Artur Jez,et al.  Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.

[13]  Alexander Okhotin,et al.  Decision problems for language equations , 2010, J. Comput. Syst. Sci..

[14]  Pierre McKenzie,et al.  The Complexity of Membership Problems for Circuits Over Sets of Natural Numbers , 2007, computational complexity.

[15]  Artur Jez,et al.  On the Number of Nonterminal Symbols in Unambiguous Conjunctive Grammars , 2018, Fundam. Informaticae.

[16]  Sheng Yu,et al.  on Sparse Languages L such that LL = Sigma , 1994, Discret. Appl. Math..

[17]  Alexander Okhotin,et al.  Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..

[18]  Arto Salomaa,et al.  Systolic trellis automatat , 1984 .

[19]  Alexander Okhotin Unambiguous Boolean grammars , 2007, Inf. Comput..

[20]  Markus Lohrey,et al.  Algorithmics on SLP-compressed strings: A survey , 2012, Groups Complex. Cryptol..

[21]  Alexander Okhotin Boolean grammars , 2004, Inf. Comput..

[22]  Artur Jez,et al.  Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.

[23]  Alexander Okhotin Homomorphisms Preserving Linear Conjunctive Languages , 2008, J. Autom. Lang. Comb..

[24]  Véronique Terrier Recognition of Linear-Slender Context-Free Languages by Real Time One-Way Cellular Automata , 2015, Automata.

[25]  Charles R. Dyer,et al.  One-Way Bounded Cellular Automata , 1980, Inf. Control..

[26]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[27]  Michal Kunc,et al.  What Do We Know About Language Equations? , 2007, Developments in Language Theory.

[28]  Michael Kaminski,et al.  LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata , 2016, J. Comput. Syst. Sci..

[29]  Véronique Terrier,et al.  On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..

[30]  Jean Berstel Sur la densité asymptotique de langages formels , 1972, ICALP.

[31]  Alexander Okhotin,et al.  An extension of context-free grammars with one-sided context specifications , 2014, Inf. Comput..