Comparing Estimators of the Galaxy Correlation Function

We present a systematic comparison of some of the usual estimators of the two-point correlation function, some of them currently used in cosmology, others extensively employed in the field of the statistical analysis of point processes. At small scales it is known that the correlation function follows reasonably well a power-law expression ξ(r) ∝ r-γ. The accurate determination of the exponent γ (the order of the pole) depends on the estimator used for ξ(r); on the other hand, its behavior at large scales gives information on a possible trend to homogeneity. We study the concept, the possible bias, the dependence on random samples, and the errors of each estimator. Errors are computed by means of artificial catalogs of Cox processes for which the analytical expression of the correlation function is known. We also introduce a new method for extracting simulated galaxy samples from cosmological simulations.

[1]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[2]  S. Maurogordato,et al.  The large-scale galaxy distribution in the Southern Sky Redshift Survey , 1992 .

[3]  R. Croft,et al.  Peculiar velocities of galaxy clusters: a comparison of mixed dark matter and low-density cold dark matter , 1994 .

[4]  A. Szalay,et al.  A New Class of Estimators for the N-Point Correlations , 1997, astro-ph/9704241.

[5]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[6]  A. R. Rivolo The two-point galaxy correlation function of the local supercluster , 1986 .

[7]  Diego Sáez,et al.  New Insights into the Universe , 1992 .

[8]  M. Rowan-Robinson,et al.  The spatial correlation function of IRAS galaxies on small and intermediate scales , 1992 .

[9]  R. van de Weygaert,et al.  Clustering paradigms and multifractal measures , 1990 .

[10]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[11]  Changbom Park,et al.  Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey , 1994 .

[12]  R. Weygaert Quasi-periodicity in deep redshift surveys , 1991 .

[13]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[14]  Alan Dressler,et al.  The Optical Redshift Survey. II. Derivation of the Luminosity and Diameter Functions and of the Density Field , 1996 .

[15]  John P. Huchra,et al.  The mean density and two-point correlation function for the CfA redshift survey slices , 1988 .

[16]  The Optical redshift survey: Sample selection and the galaxy distribution , 1994, astro-ph/9406049.

[17]  C. Frenk,et al.  Uncertainties in the cluster-cluster correlation function. , 1986 .

[18]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[19]  A. Hamilton,et al.  Evidence for biasing in the CfA survey , 1988 .

[20]  R. Martínez‐Zaguilán Angiostatin's Partners , 1999, Science.

[21]  Jr.,et al.  The Las Campanas Redshift Survey galaxy—galaxy autocorrelation function , 1997 .

[22]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. III - The Shane-Wirtanen and Zwicky catalogs , 1974 .

[23]  Martin Kerscher,et al.  A Global Descriptor of Spatial Pattern Interaction in the Galaxy Distribution , 1999 .

[24]  P. Coles,et al.  Correlations and Scaling in the QDOT Redshift Survey , 1994 .

[25]  The two-point correlation function of rich clusters of galaxies: results from an extended APM cluster redshift survey , 1994, astro-ph/9407076.

[26]  Alan Boyde,et al.  Analysis of a three-dimensional point pattern with replication , 1993 .

[27]  Dietrich Stoyan,et al.  Estimating Pair Correlation Functions of Planar Cluster Processes , 1996 .

[28]  Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – I. The redshift and real space correlation functions , 1993, astro-ph/9307001.

[29]  Amos Yahil,et al.  On the universality of the two-point galaxy correlation function , 1988 .

[30]  George Efstathiou,et al.  Galaxy correlations on large scales , 1990 .

[31]  Graham J. G. Upton,et al.  Edge-corrected Estimators for the Reduced Second Moment Measure of Point Processes , 1989 .

[32]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[33]  The two-point correlation function and morphological segregation in the Optical Redshift Survey , 1996, astro-ph/9608001.

[34]  S. Maddox,et al.  The Stromlo-APM Redshift Survey II. Variation of Galaxy Clustering with Morphology and Luminosity , 1994 .

[35]  J. Huchra,et al.  A Slice of the Universe , 1985 .

[36]  John P. Huchra,et al.  The power spectrum of IRAS galaxies , 1993 .