The emerging chemistry of sodium ion batteries for electrochemical energy storage.

Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.

[1]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[2]  H Böhm,et al.  ZEBRA batteries, enhanced power by doping , 1999 .

[3]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[4]  J. Yamaki,et al.  Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries , 2013 .

[5]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[6]  A. Yamada,et al.  Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance , 2014 .

[7]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[8]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[9]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[10]  L. Ellis,et al.  In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells , 2014 .

[11]  J. Goodenough,et al.  A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage , 2014 .

[12]  S. Dou,et al.  Reduced graphene oxide with superior cycling stability and rate capability for sodium storage , 2013 .

[13]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[14]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[15]  Ray Bert Book Review: Bottled Lightning: Superbatteries, Electric Cars, and the New Lithium Economy , by Seth Fletcher. New York City: Hill and Wang, 2011 , 2011 .

[16]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[17]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[18]  R. Asher A LAMELLAR COMPOUND OF SODIUM AND GRAPHITE , 1959 .

[19]  Andrew J. Binder,et al.  Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. , 2014, Angewandte Chemie.

[20]  Shinji Inazawa,et al.  NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range , 2013 .

[21]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[22]  K. Kubota,et al.  Structure and electrode reactions of layered rocksalt LiFeO 2 nanoparticles for lithium battery cath , 2011 .

[23]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[24]  A. Yamada,et al.  Phase Diagram of Olivine NaxFePO4 (0 < x < 1) , 2013 .

[25]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[26]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[27]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[28]  Shinichi Komaba,et al.  Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .

[29]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[30]  Anton Van der Ven,et al.  Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change , 2014 .

[31]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[32]  Hongkyung Lee,et al.  Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. , 2012, Chemical communications.

[33]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[34]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[35]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[36]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[37]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[38]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[39]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[40]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[41]  Gerbrand Ceder,et al.  Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries , 2013 .

[42]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[43]  L. Nazar,et al.  Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. , 2010, Angewandte Chemie.

[44]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[45]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[46]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[47]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[48]  R. Yazami,et al.  High performance LiCoO2 positive electrode material , 1995 .

[49]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[50]  R. C. Galloway,et al.  The ZEBRA electric vehicle battery: power and energy improvements , 1999 .

[51]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[52]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[53]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[54]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[55]  Shinichi Komaba,et al.  A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries , 2013 .

[56]  J. Tilton,et al.  Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium , 2009 .

[57]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[58]  J. Dahn,et al.  Intercalation of Water in P2, T2 and O2 Structure Az[CoxNi1/3-xMn2/3]O2 , 2001 .

[59]  Yoyo Hinuma,et al.  Temperature-concentration phase diagram of P 2 -Na x CoO 2 from first-principles calculations , 2008 .

[60]  Jeng‐Kuei Chang,et al.  Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes , 2014 .

[61]  Dong-Hwa Seo,et al.  A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries , 2012 .

[62]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[63]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[64]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[65]  Shyue Ping Ong,et al.  Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations , 2014 .

[66]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[67]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[68]  M. Obrovac,et al.  Alloy Negative Electrodes for High Energy Density Metal-Ion Cells , 2011 .

[69]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[70]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[71]  Linda F. Nazar,et al.  Crystal Structure and Electrochemical Properties of A2MPO4F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni)† , 2010 .

[72]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[73]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[74]  L. Nazar,et al.  Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials , 2011 .

[75]  Craig E. Banks,et al.  Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries , 2014 .

[76]  Yi Cui,et al.  Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries , 2014, Nature Communications.

[77]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[78]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[79]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[80]  Tomoyuki Matsuda,et al.  A sodium manganese ferrocyanide thin film for Na-ion batteries. , 2013, Chemical communications.

[81]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[82]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[83]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[84]  Kepeng Song,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[85]  T. Kenny,et al.  CORRIGENDUM: Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators , 2014, Scientific Reports.

[86]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[87]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[88]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[89]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[90]  D. Macfarlane,et al.  Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications , 2013 .

[91]  M. Obrovac,et al.  Low Voltage Sodium Intercalation in NaxNix/2Ti1-x/2O2 (0.5 ≤ x ≤ 1.0) , 2014 .

[92]  Jean-Marie Tarascon,et al.  Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .

[93]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[94]  T. Ohzuku,et al.  Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells , 1993 .

[95]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[96]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[97]  K. Kubota,et al.  A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity , 2014 .

[98]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[99]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[100]  Atsuo Yamada,et al.  Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries , 2014 .

[101]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[102]  P. Kumta,et al.  Phase Stability and Electronic Structure of NaMnO2 , 2003 .

[103]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[104]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[105]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic Chemistry.

[106]  J. Tarascon,et al.  Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2·4H2O , 2014 .

[107]  S. Passerini,et al.  Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material , 2014 .

[108]  R. Hagiwara,et al.  A safe and high-rate negative electrode for sodium-ion batteries: Hard carbon in NaFSA-C 1 C 3 pyrFSA ionic liquid at 363 K , 2014 .

[109]  Nigel P. Brandon,et al.  System modelling and integration of an intermediate temperature solid oxide fuel cell and ZEBRA battery for automotive applications , 2006 .

[110]  M. Armand,et al.  Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. , 2014, Physical chemistry chemical physics : PCCP.

[111]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[112]  G. Villeneuve,et al.  The natural and synthetic tavorite minerals: Crystal chemistry and magnetic properties , 1994 .

[113]  Yuki Yamada,et al.  Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries , 2013 .

[114]  P. Prosini,et al.  Sodium extraction from sodium iron phosphate with a Maricite structure , 2014 .

[115]  T. Hatchard,et al.  Evaluation of Electrolyte Salts and Solvents for Na-Ion Batteries in Symmetric Cells , 2014 .

[116]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[117]  W. L. Worrell,et al.  A thermodynamic study of sodium-intercalated TaS2 and TiS2 , 1979 .

[118]  I. Udod,et al.  The sodium-graphite system under high-pressure conditions: The comparison with the lithium-graphite system , 1994 .

[119]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[120]  Hongmin Zhu,et al.  Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. , 2013, Nanoscale.

[121]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[122]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[123]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[124]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[125]  Y. Moritomo,et al.  Redox Reactions in Prussian Blue Analogue Films with Fast Na+ Intercalation , 2013 .

[126]  Wenwen Deng,et al.  Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries , 2013 .

[127]  K. Amine,et al.  Nanoarchitecture Multi‐Structural Cathode Materials for High Capacity Lithium Batteries , 2013 .

[128]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[129]  Debasish Mohanty,et al.  Neutron Diffraction and Magnetic Susceptibility Studies on a High-Voltage Li1.2Mn0.55Ni0.15Co0.10O2 Lithium Ion Battery Cathode: Insight into the Crystal Structure , 2013 .

[130]  Sai-Cheong Chung,et al.  A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .

[131]  A. Petric,et al.  Thermodynamic Analysis of Reaction Products Observed in ZEBRA Cell Cathodes , 2011 .

[132]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[133]  Z. Du,et al.  Investigation of the reversible sodiation of Sn foil by ex-situ X-ray diffractometry and Mössbauer effect spectroscopy , 2014 .

[134]  Yan Yu,et al.  Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. , 2014, Nanoscale.

[135]  Arnold van Zyl,et al.  Review of the zebra battery system development , 1996 .

[136]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .