Semantically Controlled Adaptive Equalisation in Reduced Dimensionality Parameter Space

Equalisation is one of the most commonly-used tools in sound production, allowing users to control the gains of different frequency components in an audio signal. In this paper we present a model for mapping a set of equalisation parameters to a reduced dimensionality space. The purpose of this approach is to allow a user to interact with the system in an intuitive way through both the reduction of the number of parameters and the elimination of technical knowledge required to creatively equalise the input audio. The proposed model represents 13 equaliser parameters on a two-dimensional plane, which is trained with data extracted from a semantic equalisation plug-in, using the timbral adjectives warm and bright. We also include a parameter weighting stage in order to scale the input parameters to spectral features of the audio signal, making the system adaptive. To maximise the efficacy of the model, we evaluate a variety of dimensionality reduction and regression techniques, assessing the performance of both parameter reconstruction and structural preservation in low-dimensional space. After selecting an appropriate model based on the evaluation criteria, we conclude by subjectively evaluating the system using listening tests.

[1]  Bryan Pardo,et al.  Social-EQ: Crowdsourcing an Equalization Descriptor Map , 2013, ISMIR.

[2]  Tim Brookes,et al.  Perceptually-Motivated Audio Morphing: Warmth , 2010 .

[3]  J. Grey Multidimensional perceptual scaling of musical timbres. , 1977, The Journal of the Acoustical Society of America.

[4]  Sandeep Kumar,et al.  Appl. Sci , 2013 .

[5]  Joshua D. Reiss,et al.  Automatic Equalization of Multichannel Audio Using Cross-Adaptive Methods , 2009 .

[6]  Tom Bobach,et al.  Natural Neighbor Interpolation and Order of Continuity , 2006, VLUDS.

[7]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[8]  Joshua D. Reiss,et al.  An Additive Synthesis Technique for Independent Modification of the Auditory Perceptions of Brightness and Warmth , 2011 .

[9]  Yoshua Bengio,et al.  Equilibrated adaptive learning rates for non-convex optimization , 2015, NIPS.

[10]  Andrew McGregor,et al.  Finding Metric Structure in Information Theoretic Clustering , 2008, COLT.

[11]  Mike Senior,et al.  Mixing Secrets for the Small Studio , 2011 .

[12]  Udo Zoelzer,et al.  DAFX: Digital Audio Effects , 2011 .

[13]  Nitin Khosla,et al.  Dimensionality Reduction Using Factor Analysis , 2006 .

[14]  Joshua D. Reiss,et al.  Autonomous Multitrack Equalization Based on Masking Reduction , 2015 .

[15]  Joe Wolfe,et al.  Does timbral brightness scale with frequency and spectral centroid , 2006 .

[16]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[17]  Udo Zölzer,et al.  Adaptive Digital Audio Effects , 2011 .

[18]  Don H. Johnson,et al.  Symmetrizing the Kullback-Leibler Distance , 2001 .

[19]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[20]  György Fazekas,et al.  SAFE: A System for the Extraction and Retrieval of Semantic Audio Descriptors , 2014 .

[21]  Jörn Loviscach,et al.  subjEQt: controlling an equalizer through subjective terms , 2006, CHI EA '06.

[22]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[23]  Tim Brookes,et al.  Perceptually-Motivated Audio Morphing: Brightness , 2007 .

[24]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[25]  Lorenzo Bruzzone,et al.  An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection , 1995, IEEE Trans. Geosci. Remote. Sens..

[26]  James W. Beauchamp,et al.  Synthesis by Spectral Amplitude and "Brightness" Matching of Analyzed Musical Instrument Tones , 1981 .

[27]  Eddie Bazil Sound equalization tips and tricks , 2009 .

[28]  Vesa Välimäki,et al.  All About Audio Equalization: Solutions and Frontiers , 2016 .

[29]  Razvan Pascanu,et al.  Theano: A CPU and GPU Math Compiler in Python , 2010, SciPy.

[30]  Udo Zölzer,et al.  Adaptive digital audio effects (a-DAFx): a new class of sound transformations , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[31]  Joshua D. Reiss,et al.  Analysis of Musical Timbre Semantics through Metric and Non-Metric Data Reduction Techniques , 2012 .

[32]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[33]  A. de Cheveigné,et al.  The effect of fundamental frequency on the brightness dimension of timbre. , 2007, Journal of the Acoustical Society of America.

[34]  Spyridon Stasis,et al.  A model for adaptive reduced-dimensionality equalisation , 2015 .

[35]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[36]  Xavier Serra,et al.  Digital Audio Effects , 2011 .

[37]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[38]  Bryan Pardo,et al.  2DEQ: an intuitive audio equalizer , 2009, C&C '09.

[39]  Jarkko Venna,et al.  Local Multidimensional Scaling with Controlled Tradeoff Between Trustworthiness and Continuity , 2005 .

[40]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[41]  L. J. P. van der Maaten,et al.  An Introduction to Dimensionality Reduction Using Matlab , 2007 .

[42]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[43]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[44]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[45]  Guido Sanguinetti,et al.  Dimensionality Reduction of Clustered Data Sets , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.