Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange

Co0.6Zn0.4Cu0.2MxFe1.8−xO4 (M = Zn2+, Co2+, Ni2+ and Mn3+. x = 0.2, 0.4, 0.6 and 0.8) magnetically recyclable catalysts have been synthesized via a sol–gel auto combustion method. The structural and magnetic properties of the prepared samples were investigated using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometry (VSM). The XRD analysis of the synthesized samples confirmed the formation of a single-phase cubic spinel structure and the average crystallite sizes of the nanoparticles estimated using the Debye–Scherrer's equation were found to be 40–60 nm after annealing at 1000 °C (within an error of ±2 nm). The lattice constant increases with an increase in all metal ion substitution. The hysteresis curves of the samples exhibited reduction of the saturation magnetization and coercivity with substitution of all the metal ions in Co–Cu–Zn nano ferrites. The DC electrical resistivity decreased with an increase in temperature, indicating the semiconducting nature of the ferrite samples. Manganese substituted Co–Cu–Zn nanoferrites showed the best catalytic activity among all the magnetic nanoferrites. All the magnetic nanoferrites can be easily recovered by using a magnet and no decrease in the efficiency was observed after several consecutive rounds of reaction.

[1]  Fan Gao,et al.  Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. , 2016, Chemosphere.

[2]  I. Ali,et al.  Synthesis of nickel–zinc–yttrium ferrites: Structural elucidation and dielectric behavior evaluation , 2016 .

[3]  I. Shakir,et al.  Impacts of neodymium on structural, spectral and dielectric properties of LiNi0.5Fe2O4 nanocrystalline ferrites fabricated via micro-emulsion technique , 2015 .

[4]  J. Vijaya,et al.  Microwave combustion synthesis of Co1-xZnxFe2O4 (0⩽x⩽0.5): Structural, magnetic, optical and vibrational spectroscopic studies. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[5]  I. Ali,et al.  Investigations on structural, electrical and dielectric properties of yttrium substituted Mg-ferrites , 2015 .

[6]  D. V. Kurmude,et al.  Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles , 2015 .

[7]  S. Mor,et al.  Mg-Co-Zn magnetic nanoferrites: Characterization and their use for remediation of textile wastewater , 2015 .

[8]  S. Singhal,et al.  Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure , 2015 .

[9]  Vinod Kumar,et al.  CoMn0.2Fe1.8O4 ferrite nanoparticles engineered by sol–gel technology: an expert and versatile catalyst for the reduction of nitroaromatic compounds , 2014 .

[10]  S. Singhal,et al.  Substituted cobalt nano-ferrites, CoMxFe2−xO4 (M=Cr3+, Ni2+, Cu2+, Zn2+; 0.2≤x≤1.0) as heterogeneous catalysts for modified Fenton׳s reaction , 2014 .

[11]  Chun-wei Yang,et al.  The synthesis of NdFeB magnetic activated carbon and its application in degradation of azo dye methyl orange by Fenton-like process , 2014 .

[12]  D. Yoon,et al.  Effect of Zn substitution on the structural and magnetic properties of Ni-Co ferrites , 2014 .

[13]  S. Ramesh,et al.  Microstructural and magnetic behavior of mixed Ni–Zn–Co and Ni–Zn–Mn ferrites , 2014 .

[14]  M. Ranjbar,et al.  Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles , 2014 .

[15]  P. Adhyapak,et al.  Effect of chemical composition of SrxCa1 − xFe2O4 (0.0 ≤ x ≤ 1.0) catalyst and alkali towards efficient and selective epoxidation of styrene , 2014 .

[16]  S. Kosa,et al.  Structural and magnetic properties of Ni1−xZnxFe2O4 nano-crystalline ferrites prepared via novel chitosan method , 2014 .

[17]  A. Nagawade,et al.  Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method , 2014 .

[18]  P. Samoilă,et al.  Effect of Al3+ substituted zinc ferrite on photocatalytic degradation of Orange I azo dye , 2014 .

[19]  Longjun Xu,et al.  Magnetic composite ZnFe2O4/SrFe12O19: Preparation, characterization, and photocatalytic activity under visible light , 2013 .

[20]  Y. Köseoǧlu,et al.  Structural, magnetic, electrical and dielectric properties of MnxNi1−xFe2O4 spinel nanoferrites prepared by PEG assisted hydrothermal method , 2013 .

[21]  H. Shokrollahi,et al.  Structural, Magnetic and Mössbauer evaluation of Mn substituted Co-Zn ferrite nanoparticles synthesized by co-precipitation , 2013 .

[22]  Niyaz Mohammad Mahmoodi Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal , 2013 .

[23]  Weilin Guo,et al.  Heterogeneous activation of Oxone by Co(x)Fe(3-x)O4 nanocatalysts for degradation of rhodamine B. , 2013, Journal of hazardous materials.

[24]  D. Singh,et al.  Material Processing Technology for Soft Ferrites Manufacturing , 2013 .

[25]  E. M. Mohammed,et al.  Effect of Neodymium Substitution on Structural and Magnetic Properties of Cobalt Ferrite Nanoparticles , 2013 .

[26]  Niyaz Mohammad Mahmoodi,et al.  Synthesis of nickel–zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation , 2012 .

[27]  Guoli Fan,et al.  Visible-Light-Induced Photocatalyst Based on Cobalt-Doped Zinc Ferrite Nanocrystals , 2012 .

[28]  T. Katsumi,et al.  Substituted ferrite MxFe1 − xFe2O4 (M = Mn, Zn) catalysts for N2O catalytic decomposition processes , 2012 .

[29]  K. Kumar,et al.  Synthesis, XRD & SEM Studies of Zinc Substitution in Nickel Ferrites by Citrate Gel Technique , 2012 .

[30]  T. V. Jayaraman,et al.  Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites—CoFe2−xZnxO4 (x=0, 0.1, 0.2, and 0.3) , 2012 .

[31]  S. Sahu,et al.  Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants , 2012 .

[32]  V. Sharma,et al.  Synthesis and photocatalytic activity of ferrites under visible light: A review , 2012 .

[33]  M. H. Khan,et al.  Reentrant spin glass behavior and large initial permeability of Co0.5−xMnxZn0.5Fe2O4 , 2012 .

[34]  Dongfang Zhang,et al.  Characterization, activity and mechanisms of a visible light driven photocatalyst: Manganese and iron co-modified TiO2 nanoparticles , 2011 .

[35]  Liping Guo,et al.  Enhancement of saturation magnetization in Cr-ion implanted silicon by high temperature annealing , 2011 .

[36]  K. Rao,et al.  Magnetic properties and DC electrical resistivity studies on cadmium substituted nickel–zinc ferrite system , 2011 .

[37]  Liyun Ding,et al.  A facile synthesis of monodisperse CoFe2O4/SiO2 nanoparticles , 2011 .

[38]  Xinyong Li,et al.  A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. , 2011, Journal of colloid and interface science.

[39]  K. M. Jadhav,et al.  Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite , 2011 .

[40]  P. P. Hankare,et al.  Effect of sintering on photocatalytic degradation of methyl orange using zinc ferrite , 2011 .

[41]  E. Manova,et al.  Thermally synthesized nanosized copper ferrites as catalysts for environment protection , 2010 .

[42]  A. Maqsood,et al.  Influence of sintering time on the structural, electrical and magnetic properties of polycrystalline Cu0.6Zn0.4Fe2O4 ferrites , 2010 .

[43]  M. Mozaffari,et al.  The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles , 2010 .

[44]  S. Ammar,et al.  Catechol derivatives-coated Fe3O4 and gamma-Fe2O3 nanoparticles as potential MRI contrast agents. , 2010, Journal of colloid and interface science.

[45]  V. Reddy,et al.  Investigation of the large magnetic moment in nano-sized Cu0.25Co0.25Zn0.5Fe2O4 , 2009 .

[46]  P. P. Hankare,et al.  Investigation of structural and magnetic properties of nanocrystalline manganese substituted lithium ferrites , 2009 .

[47]  K. M. Jadhav,et al.  Effect of zinc substitution on structural and elastic properties of cobalt ferrite , 2009 .

[48]  M. Gabal,et al.  Effect of chromium ion substitution on the electromagnetic properties of nickel ferrite , 2009 .

[49]  P. Shaikh,et al.  Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite , 2009 .

[50]  D. Kumar,et al.  Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites , 2009 .

[51]  Danzhen Li,et al.  Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation , 2009 .

[52]  M. S. Hegde,et al.  Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications , 2008 .

[53]  R. Arulmurugan,et al.  Structural and magnetic properties of Co1−xZnxFe2O4 nanoparticles by co-precipitation method , 2007 .

[54]  Lei Song,et al.  A FeCO3 Precursor-Based Route to Microsized Peanutlike Fe3O4 , 2007 .

[55]  R. S. Turtelli,et al.  Magnetic properties of nanocrystalline Co1−xZnxFe2O4 prepared by forced hydrolysis method , 2006 .

[56]  R. Lago,et al.  Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. , 2006, Journal of hazardous materials.

[57]  Ramphal Sharma,et al.  Synthesis of chromium substituted nano particles of cobalt zinc ferrites by coprecipitation , 2005 .

[58]  C. Hwang,et al.  Preparation and characteristics of ferrite catalysts for reduction of CO2 , 2004 .

[59]  K. Modi,et al.  Localized canted spin behaviour in ZnxMg1.5−xMn0.5FeO4 spinel ferrite system , 2004 .

[60]  Yongjun Chen,et al.  Cation distribution and infrared properties of NixMn1 − xFe2O4 ferrites , 2001 .

[61]  Sung Ho Lee,et al.  Crystallographic and magnetic properties of CoCrxFe2−xO4 ferrite powders , 2000 .

[62]  J. Alonso,et al.  On the correlation of Ni oxidation states and electronic conductivity of (R,A)NiO3-δ (R=lanthanides, A=alkaline earths, Th) perovskites with catalytic activity for H2O2 decomposition , 1999 .

[63]  R. Waldron Infrared Spectra of Ferrites , 1955 .