The domination number of plane triangulations

We introduce a class of plane graphs called weak near-triangulations, and prove that this class is closed under certain graph operations. Then we use the properties of weak near-triangulations to prove that every plane triangulation on $n>6$ vertices has a dominating set of size at most $17n/53$. This improves the bound $n/3$ obtained by Matheson and Tarjan.

[1]  Ken-ichi Kawarabayashi,et al.  Dominating sets in triangulations on surfaces , 2010 .

[2]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[3]  Wayne Goddard,et al.  Domination in planar graphs with small diameter , 2002, J. Graph Theory.

[4]  Hong Liu,et al.  Dominating sets in triangulations on surfaces , 2011, Ars Math. Contemp..

[5]  Michael J. Pelsmajer,et al.  Dominating sets in plane triangulations , 2010, Discret. Math..

[6]  C. N. Campos,et al.  On dominating sets of maximal outerplanar graphs , 2013, Discret. Appl. Math..

[7]  Zehui Shao,et al.  On dominating sets of maximal outerplanar and planar graphs , 2016, Discret. Appl. Math..

[8]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[9]  Michitaka Furuya,et al.  A Note on the Domination Number of Triangulations , 2015, J. Graph Theory.

[10]  Robert E. Tarjan,et al.  Dominating Sets in Planar Graphs , 1996, Eur. J. Comb..

[11]  Gary MacGillivray,et al.  Domination numbers of planar graphs , 1996, J. Graph Theory.

[12]  Michael D. Plummer,et al.  On certain spanning subgraphs of embeddings with applications to domination , 2009, Discret. Math..

[13]  Michael D. Plummer,et al.  Dominating plane triangulations , 2016, Discret. Appl. Math..

[14]  Wayne Goddard,et al.  Domination in Planar Graphs with Small Diameter II , 2006, Ars Comb..

[15]  Michael D. Plummer,et al.  Dominating maximal outerplane graphs and Hamiltonian plane triangulations , 2020, Discret. Appl. Math..