Attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC

Despite having never been synthesized, the MAX phase Zr2AlC attracts a lot of interest owing to its foreseen properties. A possible way to circumvent this obstacle is to stabilize Zr2AlC by partially substituting one of its constituting elements. Here we report on attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C where M = Cr, Ti or Mo and A = S, As, Sn, Sb and Pb. We were notably able to produce Zr2(Al0.2Sn0.8)C, Zr2(Al0.35Pb0.65)C, and Zr2(Al0.3Sb0.7)C, with the latter representing the first antimony-based MAX phase ever reported. Impact Statement: Numerous syntheses of Zr2AlC derived compositions were attempted. Zr2(Al0.2Sn0.8)C, Zr2(Al0.35Pb0.65)C and Zr2(Al0.3Sb0.7)C were notably produced and reported for the first time.

[1]  William E Lee,et al.  Synthesis and Oxidation Testing of MAX Phase Composites in the Cr–Ti–Al–C Quaternary System , 2016 .

[2]  Denis Horlait,et al.  Synthesis and DFT investigation of new bismuth-containing MAX phases , 2016, Scientific Reports.

[3]  E. Kisi,et al.  Ti3GaC2 and Ti3InC2: First bulk synthesis, DFT stability calculations and structural systematics , 2015 .

[4]  Zhen Zhou,et al.  Recent advances in MXene: Preparation, properties, and applications , 2015 .

[5]  J. Rosen Mo2Ga2C: A New Ternary Nanolaminated Carbide. , 2015 .

[6]  M. Barsoum,et al.  Mo2TiAlC2: A new ordered layered ternary carbide , 2015 .

[7]  F. Porcher,et al.  Ordering of (Cr,V) Layers in Nanolamellar (Cr0.5V0.5)n+1AlCn Compounds , 2015 .

[8]  Jun Lu,et al.  Theoretical stability, thin film synthesis and transport properties of the Mon +1GaCn MAX phase , 2015 .

[9]  M. Barsoum,et al.  Effect of neutron irradiation on select MAX phases , 2015 .

[10]  M. Barsoum,et al.  Solid Solubility and Magnetism upon Mn Incorporation in the Bulk Ternary Carbides Cr2AlC and Cr2GaC , 2015 .

[11]  Y. Sakka,et al.  Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  M. Barsoum,et al.  New Solid Solution MAX Phases: (Ti0.5, V0.5)3AlC2, (Nb0.5, V0.5)2AlC, (Nb0.5, V0.5)4AlC3 and (Nb0.8, Zr0.2)2AlC , 2014 .

[13]  Xichao Li,et al.  Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase , 2014 .

[14]  Michel W. Barsoum,et al.  MAX Phases: Properties of Machinable Ternary Carbides and Nitrides , 2013 .

[15]  D. Kang Influence of Different A Elements on Bonding and Elastic Properties of Zr 2 AC (A = Al, Si, P, S): A Theoretical Investigation , 2013 .

[16]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[17]  G. Coccoluto,et al.  Ti3SiC2 as a candidate material for lead cooled fast reactor , 2011 .

[18]  J. Zaykoski,et al.  Synthesis and Characterization of Zr2SC Ceramics , 2011 .

[19]  S. Goumri‐Said,et al.  Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr2AC , 2010 .

[20]  Ulf Jansson,et al.  The Mn+1AXn phases: Materials science and thin-film processing , 2010 .

[21]  Yanchun Zhou,et al.  Recent Progress in Theoretical Prediction, Preparation, and Characterization of Layered Ternary Transition-Metal Carbides , 2009 .

[22]  I. Monnet,et al.  Damages induced by heavy ions in titanium silicon carbide: effects of nuclear and electronic interactions at room temperature , 2009 .

[23]  Yanchun Zhou,et al.  New MAX‐Phase Compounds in the V–Cr–Al–C System , 2008 .

[24]  S. Saxena,et al.  High pressure structural behavior and synthesis of Zr2SC , 2008 .

[25]  M. Chegaar,et al.  Structural and elastic properties of Zr2AlX and Ti2AlX (X = C and N) under pressure effect , 2007 .

[26]  B. Bouhafs,et al.  Full-relativistic calculation of electronic structure of Zr2AlC and Zr2AlN , 2006 .

[27]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[28]  Michel W. Barsoum,et al.  The MAX Phases: Unique New Carbide and Nitride Materials , 2001, American Scientist.

[29]  M. Barsoum,et al.  Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC (M=Ti, Hf, Nb or Zr) , 2000 .

[30]  M. Barsoum,et al.  Fabrication and characterization of M2SnC (M = Ti, Zr, Hf and Nb) , 1997 .

[31]  M. Barsoum,et al.  Layered machinable ceramics for high temperature applications , 1997 .

[32]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[33]  J. Corbett,et al.  A synthetic and structural study of the zirconium-antimony system , 1988 .

[34]  R. Sharma,et al.  The Al−S (Aluminum-Sulfur) system , 1987 .

[35]  G. Blasse New compounds with eulytine structure: Crystal chemistry and luminescence , 1970 .

[36]  H. Nowotny,et al.  Strukturchemische und magnetochemische Untersuchungen an Komplexcarbiden , 1966 .

[37]  H. Nowotny,et al.  Carbides of formula T2MC , 1964 .

[38]  H. Nowotny,et al.  Kohlenstoffhaltige ternäre Verbindungen (H-Phase) , 1963 .

[39]  H. Kudielka,et al.  Strukturuntersuchungen an Carbosulfiden von Titan und Zirkon , 1960 .

[40]  M. Barsoum,et al.  Solid solubility and magnetism upon Mn incorporation in bulk Cr2AlC and Cr2GaC MAX phases , 2014 .

[41]  S. Bragg‐Sitton Development of advanced accident-tolerant fuels for commercial LWRs , 2014 .

[42]  Chunfeng Hu,et al.  New phases’ discovery in MAX family , 2013 .

[43]  J. R. Granada,et al.  Neutron Scattering Lengths and Cross Sections , 2013 .

[44]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[45]  Von Hans Nowotny Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn , 1971 .