Corneal Biomechanical Properties in Different Ocular Conditions and New Measurement Techniques

Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties.

[1]  J. Tyrer,et al.  Age-related differences in the elasticity of the human cornea. , 2011, Investigative ophthalmology & visual science.

[2]  D. Luce Determining in vivo biomechanical properties of the cornea with an ocular response analyzer , 2005, Journal of cataract and refractive surgery.

[3]  S. Shah,et al.  Comparison of biomechanical parameters in penetrating keratoplasty and normal eyes using the Ocular Response Analyser , 2010, Clinical & experimental ophthalmology.

[4]  F. Medeiros,et al.  Comparison of corneal biomechanical properties between healthy blacks and whites using the Ocular Response Analyzer. , 2010, American journal of ophthalmology.

[5]  Rex D. Hamilton,et al.  Differences in the corneal biomechanical effects of surface ablation compared with laser in situ keratomileusis using a microkeratome or femtosecond laser , 2008, Journal of cataract and refractive surgery.

[6]  C. Qualls,et al.  Ocular Response Analyzer in Subjects with and without Glaucoma , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[7]  J. Hjortdal,et al.  Intraocular pressure and corneal biomechanics in Fuchs’ endothelial dystrophy and after posterior lamellar keratoplasty , 2014, Acta ophthalmologica.

[8]  Jianhua Wang,et al.  Biomechanical properties of the cornea in high myopia , 2008, Vision Research.

[9]  J. Townend,et al.  Corneal Biomechanical Properties in Primary Open Angle Glaucoma and Normal Tension Glaucoma , 2008, Journal of glaucoma.

[10]  K. Toussaint,et al.  The effect of keratoconus on the structural, mechanical, and optical properties of the cornea. , 2011, Journal of the mechanical behavior of biomedical materials.

[11]  Dissipated energy function, hysteresis and precondition of a viscoelastic solid model , 2010 .

[12]  W. Wee,et al.  Evaluation of Corneal Biomechanical Properties Following Penetrating Keratoplasty Using the Ocular Response Analyzer , 2010, Korean journal of ophthalmology : KJO.

[13]  F. Aptel,et al.  Prospective Study of Corneal Collagen Cross-linking Efficacy and Tolerance in the Treatment of Keratoconus and Corneal Ectasia: 3-Year Results , 2013, Cornea.

[14]  C. Villa-Collar,et al.  Pilot Study on the Influence of Corneal Biomechanical Properties Over the Short Term in Response to Corneal Refractive Therapy for Myopia , 2008, Cornea.

[15]  Renato Ambrósio,et al.  Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes. , 2010, Journal of refractive surgery.

[16]  N. Dowling,et al.  Mechanical Behavior of Materials , 2012 .

[17]  Kostadinka Bizheva,et al.  Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[18]  H. Radhakrishnan,et al.  Corneal biomechanical properties and their correlates with refractive error , 2012, Clinical & experimental optometry.

[19]  L. G. Biteli,et al.  Corneal Viscoelasticity Differences Between Diabetic and Nondiabetic Glaucomatous Patients , 2009, Journal of glaucoma.

[20]  Renato Ambrósio,et al.  Implante de segmentos de anel estromal em ceratocone: resultados e correlações com a biomecânica corneana pré-operatória , 2012 .

[21]  David Touboul,et al.  Biomechanical characteristics of the ectatic cornea , 2008, Journal of cataract and refractive surgery.

[22]  R. Ritch,et al.  Corneal hysteresis and visual field asymmetry in open angle glaucoma. , 2010, Investigative ophthalmology & visual science.

[23]  E. Bedel Relationship between , 2009 .

[24]  Jun Liu,et al.  Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis , 2005, Journal of cataract and refractive surgery.

[25]  Renato Ambrósio,et al.  Refractive, Tomographic and Biomechanical Outcomes after Implantation of Ferrara ICRS in Keratoconus Patients , 2012 .

[26]  A. Lam,et al.  Comparison of IOP Measurements Between ORA and GAT in Normal Chinese , 2007, Optometry and vision science : official publication of the American Academy of Optometry.

[27]  K. Bower,et al.  Corneal biomechanics following epi-LASIK. , 2011, Journal of refractive surgery.

[28]  Ahmed Elsheikh,et al.  Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. , 2006, Investigative ophthalmology & visual science.

[29]  K. Wegscheider,et al.  Changes of extracellular matrix of the cornea in diabetes mellitus , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[30]  M. Moshirfar,et al.  Corneal collagen cross-linking for nonectatic disorders: a systematic review. , 2012, Journal of refractive surgery.

[31]  J. Alió,et al.  Intracorneal ring segment in keratoconus: a model to predict visual changes induced by the surgery. , 2012, Investigative ophthalmology & visual science.

[32]  Ahmed Alharbi,et al.  The effects of overnight orthokeratology lens wear on corneal thickness. , 2003, Investigative ophthalmology & visual science.

[33]  A. Daxer,et al.  Collagen fibrils in the human corneal stroma: structure and aging. , 1998, Investigative ophthalmology & visual science.

[34]  H. Goldmann,et al.  On applanation tonography. , 1965, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[35]  Sunil Shah,et al.  Ocular response analyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension , 2008, Clinical & experimental ophthalmology.

[36]  J. Wolffsohn,et al.  Changes of Corneal Biomechanics With Keratoconus , 2012, Cornea.

[37]  David P Piñero,et al.  Intracorneal ring segment implantation in corneas with post-laser in situ keratomileusis keratectasia. , 2009, Ophthalmology.

[38]  Cathy Frey,et al.  Investigative Ophthalmology and Visual Science , 2010 .

[39]  F. Yu,et al.  Corneal deformation signal waveform analysis in keratoconic versus post‐femtosecond laser in situ keratomileusis eyes after statistical correction for potentially confounding factors , 2012, Journal of cataract and refractive surgery.

[40]  A. Lam,et al.  A pilot study on the corneal biomechanical changes in short‐term orthokeratology , 2009, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[41]  D. Garway-Heath,et al.  Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. , 2008, Investigative ophthalmology & visual science.

[42]  R. Ritch,et al.  Association between corneal biomechanical properties and optic nerve head morphology in newly diagnosed glaucoma patients , 2012, Clinical & experimental ophthalmology.

[43]  Felipe A. Medeiros,et al.  Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer , 2006, Journal of glaucoma.

[44]  F. Ascaso,et al.  Biomechanical properties of the cornea in Fuchs' corneal dystrophy. , 2009, Investigative ophthalmology & visual science.

[45]  A. Elsheikh,et al.  Characterization of age-related variation in corneal biomechanical properties , 2010, Journal of The Royal Society Interface.

[46]  Jianhua Wang,et al.  Association between corneal biomechanical properties and myopia in Chinese subjects , 2011, Eye.

[47]  Robert N Weinreb,et al.  An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. , 2013, Investigative ophthalmology & visual science.

[48]  Marcella Q. Salomão,et al.  Intrastromal corneal ring segments for keratoconus: results and correlation with preoperative corneal biomechanics , 2012 .

[49]  W. Charman,et al.  Corneal biomechanical properties measured with the Ocular Response Analyser in a myopic population , 2011, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[50]  G. Grabner,et al.  Dynamic corneal imaging , 2005, Journal of cataract and refractive surgery.

[51]  J. Hjortdal,et al.  On the biomechanical properties of the cornea with particular reference to refractive surgery. , 1998, Acta ophthalmologica Scandinavica. Supplement.

[52]  Joshua R. Ehrlich,et al.  Variation in corneal hysteresis and central corneal thickness among black, hispanic and white subjects , 2012, Acta ophthalmologica.

[53]  S. Yun,et al.  Brillouin optical microscopy for corneal biomechanics. , 2012, Investigative ophthalmology & visual science.

[54]  W. A. Schlegel,et al.  Nonlinear material properties of intact cornea and sclera. , 1972, Experimental eye research.

[55]  N. Congdon,et al.  Central corneal thickness and corneal hysteresis associated with glaucoma damage. , 2006, American journal of ophthalmology.

[56]  P. McDonnell,et al.  An ultrasonic technique for the measurement of the elastic moduli of human cornea. , 1996, Journal of biomechanics.

[57]  A. Elsheikh,et al.  Clinical evaluation of multiparameter correction equations for Goldmann applanation tonometry , 2013, Eye.

[58]  A. Gallois,et al.  Early biomechanical keratoconus pattern measured with an ocular response analyzer: Curve analysis , 2011, Journal of cataract and refractive surgery.

[59]  Damien Gatinel,et al.  Corneal hysteresis, resistance factor, topography, and pachymetry after corneal lamellar flap. , 2007, Journal of refractive surgery.

[60]  R. T. Hart,et al.  The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage , 2005, Progress in Retinal and Eye Research.

[61]  K. Shimizu,et al.  Effect of aging on corneal biomechanical parameters using the ocular response analyzer. , 2009, Journal of refractive surgery.

[62]  M. Lesk,et al.  Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension. , 2006, Archives of ophthalmology.

[63]  J. Alió,et al.  Modeling the intracorneal ring segment effect in keratoconus using refractive, keratometric, and corneal aberrometric data. , 2010, Investigative ophthalmology & visual science.

[64]  D. Hoeltzel,et al.  Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. , 1992, Journal of biomechanical engineering.

[65]  J. Alió,et al.  Corneal biomechanics, refraction, and corneal aberrometry in keratoconus: an integrated study. , 2010, Investigative ophthalmology & visual science.

[66]  A. Bayer,et al.  Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements. , 2009, Investigative ophthalmology & visual science.

[67]  Ose,et al.  Ability of corneal biomechanical metrics and anterior segment data in the differentiation of keratoconus and healthy corneas , 2010 .

[68]  D. Pye,et al.  A clinical description of Ocular Response Analyzer measurements. , 2011, Investigative ophthalmology & visual science.

[69]  E. Feretis,et al.  Association between corneal hysteresis and central corneal thickness in glaucomatous and non‐glaucomatous eyes , 2009, Acta ophthalmologica.

[70]  C. Roberts,et al.  Screening of forme fruste keratoconus with the ocular response analyzer. , 2010, Investigative ophthalmology & visual science.

[71]  R. Weinreb,et al.  Effect of 24-hour corneal biomechanical changes on intraocular pressure measurement. , 2006, Investigative ophthalmology & visual science.

[72]  N. Congdon,et al.  Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) report no. 4. , 2008, American journal of ophthalmology.

[73]  Cynthia J. Roberts,et al.  Biomechanical and morphological corneal response to placement of intrastromal corneal ring segments for keratoconus , 2009, Journal of cataract and refractive surgery.

[74]  F. Raiskup,et al.  Detection of biomechanical changes after corneal cross-linking using Ocular Response Analyzer software. , 2011, Journal of refractive surgery.

[75]  Myhanh T Nguyen,et al.  Corneal Biomechanical Properties in Normal, Forme Fruste Keratoconus, and Manifest Keratoconus After Statistical Correction for Potentially Confounding Factors , 2011, Cornea.

[76]  J. Alió,et al.  Corneal Biomechanical Changes After Intracorneal Ring Segment Implantation in Keratoconus , 2012, Cornea.

[77]  Hyunsu Bae,et al.  Evidence Based Complementary and Alternative Medicine , 2008, Evidence-based complementary and alternative medicine : eCAM.

[78]  N. Dowling Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue , 1993 .

[79]  C. Villa-Collar,et al.  Biomechanical properties in corneal refractive therapy during adaptation period and after treatment interruption: A pilot study. , 2012 .

[80]  Caitriona Kirwan,et al.  Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. , 2006, American journal of ophthalmology.

[81]  C. Edmund,et al.  Corneal elasticity and ocular rigidity in normal and keratoconic eyes , 1988, Acta ophthalmologica.

[82]  David C. Pye,et al.  Young’s Modulus in Normal Corneas and the Effect on Applanation Tonometry , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[83]  A. Elsheikh,et al.  Assessment of Corneal Biomechanical Properties and Their Variation with Age , 2007, Current eye research.

[84]  J. Hjortdal,et al.  Extensibility of the normo-hydrated human cornea. , 2009, Acta ophthalmologica Scandinavica.

[85]  J. Marshall,et al.  Model for deriving the optical performance of the myopic eye corrected with an intracorneal ring. , 1995, Journal of refractive surgery.

[86]  M. Jafarinasab,et al.  Graft Biomechanical Properties after Penetrating Keratoplasty versus Deep Anterior Lamellar Keratoplasty , 2011, Current eye research.

[87]  D. Gatinel,et al.  Biomechanical properties of keratoconus suspect eyes. , 2010, Investigative ophthalmology & visual science.

[88]  T. Seiler,et al.  Stress‐strain measurements of human and porcine corneas after riboflavin–ultraviolet‐A‐induced cross‐linking , 2003, Journal of cataract and refractive surgery.

[89]  M. Wojtkowski,et al.  Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. , 2011, Optics express.

[90]  S. Yazdani,et al.  Graft Biomechanical Properties After Penetrating Keratoplasty in Keratoconus , 2012, Cornea.

[91]  A. Lam,et al.  The Usefulness of Waveform Score from the Ocular Response Analyzer , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[92]  S. Shah,et al.  Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser. , 2009, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[93]  Newton Kara-José,et al.  Proposal for a new approach to corneal biomechanics: dynamic corneal topography. , 2009, Arquivos brasileiros de oftalmologia.

[94]  Joshua R. Ehrlich,et al.  Evaluation of agreement between intraocular pressure measurements using Goldmann applanation tonometry and Goldmann correlated intraocular pressure by Reichert's ocular response analyser , 2010, Eye.

[95]  Jun Liu,et al.  A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties. , 2009, Investigative ophthalmology & visual science.

[96]  Jianhua Wang,et al.  Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. , 2009, American journal of ophthalmology.

[97]  K. Shimizu,et al.  Time Course of Corneal Biomechanical Parameters after Laser in situ Keratomileusis , 2009, Ophthalmic Research.

[98]  Mostafa Naderi,et al.  Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis , 2010, Journal of cataract and refractive surgery.

[99]  Y. Gerber,et al.  Effect of diabetes mellitus on biomechanical parameters of the cornea , 2009, Journal of cataract and refractive surgery.

[100]  A. Daxer,et al.  Clinical outcomes after complete ring implantation in corneal ectasia using the femtosecond technology: a pilot study. , 2011, Ophthalmology.

[101]  E. Cohen,et al.  Keratoconus and Normal-Tension Glaucoma: A Study of the Possible Association With Abnormal Biomechanical Properties as Measured by Corneal Hysteresis , 2010, Cornea.

[102]  Renato Ambrósio,et al.  Evaluation of Corneal Shape and Biomechanics Before LASIK , 2011, International ophthalmology clinics.

[103]  K. Aggarwal,et al.  Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. , 2012, American journal of ophthalmology.

[104]  T. Pförtner,et al.  Improved keratoconus detection by ocular response analyzer testing after consideration of corneal thickness as a confounding factor. , 2012, Journal of refractive surgery.

[105]  J. Jamart,et al.  Comparison of the corneal biomechanical properties with the Ocular Response Analyzer® (ORA) in African and Caucasian normal subjects and patients with glaucoma , 2012, Acta ophthalmologica.

[106]  Xueliang Pan,et al.  Ultrasonic model and system for measurement of corneal biomechanical properties and validation on phantoms. , 2007, Journal of biomechanics.

[107]  Jaikishan Jayakumar,et al.  The Effect of Age on Short-Term Orthokeratology , 2005, Optometry and vision science : official publication of the American Academy of Optometry.

[108]  C. Roberts,et al.  A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. , 2008, Investigative ophthalmology & visual science.

[109]  D. Fonn,et al.  Distribution of Overnight Corneal Swelling Across Subjects With 4 Different Silicone Hydrogel Lenses , 2009, Eye & contact lens.

[110]  Aachal Kotecha,et al.  What biomechanical properties of the cornea are relevant for the clinician? , 2007, Survey of ophthalmology.

[111]  J. Tyrer,et al.  In vitro quantification of the stiffening effect of corneal cross-linking in the human cornea using radial shearing speckle pattern interferometry. , 2012, Journal of refractive surgery.

[112]  Yifei Huang,et al.  Changes in collagen orientation and distribution in keratoconus corneas. , 2005, Investigative ophthalmology & visual science.

[113]  N. Yenerel,et al.  Changes in Corneal Biomechanics in Patients With Keratoconus After Penetrating Keratoplasty , 2010, Cornea.

[114]  Leon Lobo,et al.  Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery , 2005, Journal of cataract and refractive surgery.

[115]  N. Yenerel,et al.  Influence of intrastromal corneal ring segment implantation on corneal biomechanical parameters in keratoconic eyes , 2011, Japanese Journal of Ophthalmology.

[116]  Nader H. L. Bayoumi,et al.  Ocular Response Analyzer and Goldmann Applanation Tonometry: A Comparative Study of Findings , 2010, Journal of glaucoma.

[117]  David Touboul,et al.  Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry , 2008, Journal of cataract and refractive surgery.

[118]  Mehmet Orhan,et al.  In vivo Confocal Microscopy for the Evaluation of Corneal Microstructure in Keratoconus , 2008, Current eye research.

[119]  A. Parsa,et al.  Central corneal thickness and correlation to optic disc size: a potential link for susceptibility to glaucoma , 2006, British Journal of Ophthalmology.

[120]  Fan Lu,et al.  Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lens wear with eye closure. , 2007, American journal of ophthalmology.

[121]  Eberhard Spoerl,et al.  Effect of diabetes mellitus on corneal biomechanics and measurement of intraocular pressure , 2012, Acta ophthalmologica.

[122]  Xinghuai Sun,et al.  A new tonometer--the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. , 2013, Investigative ophthalmology & visual science.

[123]  Caitriona Kirwan,et al.  Corneal hysteresis using the Reichert ocular response analyser: findings pre‐ and post‐LASIK and LASEK , 2008, Acta ophthalmologica.

[124]  Thomas Deffieux,et al.  Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. , 2008, Ultrasound in medicine & biology.

[125]  R. S. Mackay,et al.  A theoretical and experimental study of the mechanical behavior of the cornea with application to the measurement of intraocular pressure , 1966 .

[126]  M. Dubbelman,et al.  The Influence of Chronic Diabetes Mellitus on the Thickness and the Shape of the Anterior and Posterior Surface of the Cornea , 2007, Cornea.

[127]  Mathias Fink,et al.  High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging , 2009, IEEE Transactions on Medical Imaging.

[128]  M. Hosny,et al.  Changes in corneal biomechanics following different keratoplasty techniques , 2011, Clinical ophthalmology.

[129]  Y. Shih,et al.  The cornea in young myopic adults , 2001, The British journal of ophthalmology.

[130]  O. Abitbol,et al.  Corneal hysteresis measured with the Ocular Response Analyzer® in normal and glaucomatous eyes , 2010, Acta ophthalmologica.

[131]  Y. Chan,et al.  Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. , 2008, Investigative ophthalmology & visual science.

[132]  J. Alió,et al.  Intracorneal ring segments in ectatic corneal disease – a review , 2010, Clinical & experimental ophthalmology.

[133]  Konstantin Kotliar,et al.  Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus , 2011, British Journal of Ophthalmology.

[134]  A. Bayer,et al.  The Relationship Between Corneal Biomechanical Properties and Confocal Microscopy Findings in Normal and Keratoconic Eyes , 2010, Cornea.

[135]  I. Cunliffe,et al.  Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. , 2007, Investigative ophthalmology & visual science.

[136]  Farhad Hafezi,et al.  Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. , 2010, Journal of refractive surgery.

[137]  C. Villa-Collar,et al.  Short-Term Corneal Response to Corneal Refractive Therapy for Different Refractive Targets , 2009, Cornea.

[138]  Teruyo Kida,et al.  Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure. , 2008, American journal of ophthalmology.

[139]  Jianhua Wang,et al.  Corneal Biomechanical Properties and Intraocular Pressure in High Myopic Anisometropia , 2010, Eye & contact lens.

[140]  A. Adamis,et al.  Fuchs' endothelial dystrophy of the cornea. , 1993, Survey of ophthalmology.

[141]  A. Azuara-Blanco,et al.  Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON) , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[142]  Walton Nosé,et al.  Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. , 2010, Ophthalmology.

[143]  Sunil Shah,et al.  The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. , 2006, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[144]  B. Hochheimer,et al.  Corneal wound healing: holographic stress-test analysis. , 1981, Investigative ophthalmology & visual science.

[145]  Jay S Pepose,et al.  Postoperative changes in intraocular pressure and corneal biomechanical metrics: Laser in situ keratomileusis versus laser‐assisted subepithelial keratectomy , 2009, Journal of cataract and refractive surgery.

[146]  R. Raman,et al.  Changes in the Corneal Endothelial Cell Density and Morphology in Patients With Type 2 Diabetes Mellitus: a Population-Based Study, Sankara Nethralaya Diabetic Retinopathy And Molecular Genetics Study (SN-DREAMS, Report 23) , 2012, Cornea.

[147]  O. Abitbol,et al.  Assessment of Corneal Biomechanical Properties in Normal Tension Glaucoma and Comparison With Open-angle Glaucoma, Ocular Hypertension, and Normal Eyes , 2012, Journal of glaucoma.

[148]  Mujtaba A. Qazi,et al.  Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. , 2007, American journal of ophthalmology.

[149]  A. Elsheikh,et al.  Corneal biomechanical characteristics in patients with diabetes mellitus , 2010, Journal of cataract and refractive surgery.

[150]  J. Alió,et al.  Corneal biomechanical properties in normal, post‐laser in situ keratomileusis, and keratoconic eyes , 2007, Journal of cataract and refractive surgery.

[151]  Tutut Herawan,et al.  Computational and mathematical methods in medicine. , 2006, Computational and mathematical methods in medicine.

[152]  A. Tafreshi,et al.  Association between corneal biomechanical properties and glaucoma severity. , 2012, American journal of ophthalmology.

[153]  M. O'Keefe,et al.  Corneal Hysteresis and Corneal Resistance Factor in Keratoectasia: Findings Using the Reichert Ocular Response Analyzer , 2008, Ophthalmologica.

[154]  R. Vogel Pharmaceutical agents and the prevention or reduction of progressive myopia , 1988, Acta ophthalmologica. Supplement.

[155]  F. Ozturk,et al.  The Effect of Contact Lens Usage on Corneal Biomechanical Parameters in Myopic Patients , 2012, Cornea.

[156]  William J Dupps,et al.  Surface wave elastometry of the cornea in porcine and human donor eyes. , 2007, Journal of refractive surgery.

[157]  J. González-Méijome,et al.  Intraoffice Variability of Corneal Biomechanical Parameters and Intraocular Pressure (IOP) , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[158]  K. Shimizu,et al.  Factors affecting corneal hysteresis in normal eyes , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[159]  N. Shoji,et al.  Corneal biomechanical properties in normal‐tension glaucoma , 2012, Acta ophthalmologica.

[160]  M. R. Bryant,et al.  Constitutive laws for biomechanical modeling of refractive surgery. , 1996, Journal of biomechanical engineering.

[161]  D. Maurice,et al.  The mechanical properties of the rabbit and human cornea. , 1986, Journal of biomechanics.

[162]  D. Pye,et al.  Changes in corneal biomechanics and applanation tonometry with induced corneal swelling. , 2011, Investigative ophthalmology & visual science.

[163]  James G Hay,et al.  The biomechanics of sports techniques , 1973 .

[164]  T. M. El-Raggal Riboflavin-Ultraviolet A Corneal Cross-linking for Keratoconus , 2009, Middle East African journal of ophthalmology.

[165]  Thomas Deffieux,et al.  Shear Wave Spectroscopy for In Vivo Quantification of Human Soft Tissues Visco-Elasticity , 2009, IEEE Transactions on Medical Imaging.

[166]  Jianhua Wang,et al.  Changes in ocular response analyzer parameters after LASIK. , 2010, Journal of refractive surgery.

[167]  A. A. Antonov,et al.  Determination of corneal elasticity coefficient using the ORA database. , 2010, Journal of refractive surgery.

[168]  Matthew R. Ford,et al.  Method for optical coherence elastography of the cornea. , 2011, Journal of biomedical optics.

[169]  C. Villa-Collar,et al.  Corneal transparency after cross-linking for keratoconus: 1-year follow-up. , 2012, Journal of refractive surgery.

[170]  P R Greene,et al.  Comparison of mechanical properties of keratoconus and normal corneas. , 1982, Experimental eye research.

[171]  H. Oxlund,et al.  Biomechanical properties of keratoconus and normal corneas. , 1980, Experimental eye research.

[172]  I. Avni,et al.  Can We Measure Corneal Biomechanical Changes After Collagen Cross-Linking in Eyes With Keratoconus?-A Pilot Study , 2009, Cornea.

[173]  Madalena Lira,et al.  Biomechanical properties of the cornea measured by the Ocular Response Analyzer and their association with intraocular pressure and the central corneal curvature , 2009, Clinical & experimental optometry.

[174]  A. Bayer,et al.  Changes of extracellular matrix of the cornea in diabetes mellitus , 2010, Graefe's Archive for Clinical and Experimental Ophthalmology.

[175]  G. Krieglstein,et al.  Central and paracentral corneal pachymetry in patients with normal tension glaucoma and ocular hypertension , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[176]  Y. Hon,et al.  Corneal Deformation Measurement Using Scheimpflug Noncontact Tonometry , 2013, Optometry and vision science : official publication of the American Academy of Optometry.

[177]  R. Luben,et al.  Intraocular pressure and corneal biomechanics in an adult British population: the EPIC-Norfolk eye study. , 2011, Investigative ophthalmology & visual science.

[178]  K. Shimizu,et al.  Comparison of the Changes in Corneal Biomechanical Properties After Photorefractive Keratectomy and Laser In Situ Keratomileusis , 2009, Cornea.