Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum.

The dinoflagellate Lepidodinium chlorophorum possesses "green" plastids containing chlorophylls a and b (Chl a+b), unlike most dinoflagellate plastids with Chl a+c plus a carotenoid peridinin (peridinin-containing plastids). In the present study we determined 8 plastid-encoded genes from Lepidodinium to investigate the origin of the Chl a+b-containing dinoflagellate plastids. The plastid-encoded gene phylogeny clearly showed that Lepidodinium plastids were derived from a member of Chlorophyta, consistent with pigment composition. We also isolated three different glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes from Lepidodinium-one encoding the putative cytosolic "GapC" enzyme and the remaining two showing affinities to the "plastid-targeted GapC" genes. In a GAPDH phylogeny, one of the plastid-targeted GapC-like sequences robustly grouped with those of dinoflagellates bearing peridinin-containing plastids, while the other was nested in a clade of the homologues of haptophytes and dinoflagellate genera Karenia and Karlodinium bearing "haptophyte-derived" plastids. Since neither host nor plastid phylogeny suggested an evolutionary connection between Lepidodinium and Karenia/Karlodinium, a lateral transfer of a plastid-targeted GapC gene most likely took place from a haptophyte or a dinoflagellate with haptophyte-derived plastids to Lepidodinium. The plastid-targeted GapC data can be considered as an evidence for the single origin of plastids in haptophytes, cryptophytes, stramenopiles, and alveolates. However, in the light of Lepidodinium GAPDH data, we need to closely examine whether the monophyly of the plastids in the above lineages inferred from plastid-targeted GapC genes truly reflects that of the host lineages.

[1]  P. Keeling,et al.  Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. , 2003, Molecular biology and evolution.

[2]  Jan-Fang Cheng,et al.  Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis. , 2006, Molecular biology and evolution.

[3]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[4]  Tadashi Maruyama,et al.  An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. , 2003, Protist.

[5]  A. von Haeseler,et al.  IQPNNI: moving fast through tree space and stopping in time. , 2004, Molecular biology and evolution.

[6]  Y. Mély,et al.  Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold. , 1993, Biochemistry.

[7]  T. Gaasterland,et al.  Spliced leader RNA trans-splicing in dinoflagellates , 2007, Proceedings of the National Academy of Sciences.

[8]  W. Martin,et al.  Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  T. Cavalier-smith,et al.  Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses , 2002, Current Biology.

[10]  Tadashi Maruyama,et al.  Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. , 2004, Protist.

[11]  N. Patron,et al.  Complex protein targeting to dinoflagellate plastids. , 2005, Journal of molecular biology.

[12]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[13]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[14]  Y. Inagaki,et al.  Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. , 2007, Molecular phylogenetics and evolution.

[15]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[16]  B. Green,et al.  Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Brinkmann,et al.  A “Green” Phosphoribulokinase in Complex Algae with Red Plastids: Evidence for a Single Secondary Endosymbiosis Leading to Haptophytes, Cryptophytes, Heterokonts, and Dinoflagellates , 2006, Journal of Molecular Evolution.

[18]  Debashish Bhattacharya,et al.  Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[19]  Y. Takano,et al.  ACQUIRING SCANNING ELECTRON MICROSCOPICAL, LIGHT MICROSCOPICAL AND MULTIPLE GENE SEQUENCE DATA FROM A SINGLE DINOFLAGELLATE CELL 1 , 2006 .

[20]  S. Bowman,et al.  Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. , 2007, Molecular biology and evolution.

[21]  G. McFadden,et al.  Translocation of proteins across the multiple membranes of complex plastids. , 2001, Biochimica et biophysica acta.

[22]  T. Cavalier-smith Principles of Protein and Lipid Targeting in Secondary Symbiogenesis: Euglenoid, Dinoflagellate, and Sporozoan Plastid Origins and the Eukaryote Family Tree 1 , 2 , 1999, The Journal of eukaryotic microbiology.

[23]  C. Delwiche,et al.  Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids. , 2006, Molecular biology and evolution.

[24]  N. Patron,et al.  A tertiary plastid uses genes from two endosymbionts. , 2006, Journal of molecular biology.

[25]  C. Morden,et al.  IDENTITY OF THE ENDOSYMBIONT OF PERIDINIUM FOLIACEUM (PYRROPHYTA): ANALYSIS OF THE rbcLS OPERON 1 , 1996 .

[26]  C. Valentin,et al.  The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus , 1994, Journal of Molecular Evolution.

[27]  S. Schwartzbach,et al.  Topology of Euglena Chloroplast Protein Precursors within Endoplasmic Reticulum to Golgi to Chloroplast Transport Vesicles* , 1999, The Journal of Biological Chemistry.

[28]  C. Delwiche,et al.  Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. , 2005, Molecular biology and evolution.

[29]  Søren Brunak,et al.  A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites , 1997, Int. J. Neural Syst..

[30]  R. Cerff,et al.  Evolutionary origin of cryptomonad microalgae: Two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components , 2009, Journal of Molecular Evolution.

[31]  C. Delwiche,et al.  Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. , 2007, Molecular phylogenetics and evolution.

[32]  D. Morse,et al.  Plastid ultrastructure defines the protein import pathway in dinoflagellates , 2003, Journal of Cell Science.

[33]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[34]  B. Lang,et al.  Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans , 2007, Current Biology.

[35]  Y. Inagaki,et al.  Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. , 2004, Systematic biology.

[36]  H. Brinkmann,et al.  Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach , 2004, Plant Molecular Biology.

[37]  W. Yih,et al.  First successful culture of the marine dinoflagellate Dinophysis acuminata , 2006 .

[38]  T. Ohama,et al.  Algae or Protozoa: Phylogenetic Position of Euglenophytes and Dinoflagellates as Inferred from Mitochondrial Sequences , 1997, Journal of Molecular Evolution.

[39]  M. Chihara,et al.  A GREEN DINOFLAGELLATE WITH CHLOROPHYLLS a and b: MORPHOLOGY, FINE STRUCTURE OF THE CHLOROPLAST AND CHLOROPHYLL COMPOSITION 1 , 1987 .

[40]  T. Cavalier-smith,et al.  Dinoflagellate Nuclear SSU rRNA Phylogeny Suggests Multiple Plastid Losses and Replacements , 2001, Journal of Molecular Evolution.

[41]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[42]  T. Maruyama,et al.  Molecular evidence for plastid robbery (Kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. , 2002, Protist.

[43]  C. Delwiche,et al.  Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. , 2000, Molecular biology and evolution.

[44]  M. Chihara,et al.  LEPIDODINIUM VIRIDE GEN. ET SP. NOV. (GYMNODINAIALES, DINOPHYTA), A GREEN DINOFLAGELLATE WITH A CHLOROPHYLL A‐ AND B‐CONTAINING ENDOSYMBIONT 1, 2 , 1990 .

[45]  W. Martin,et al.  Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. , 2000, Molecular biology and evolution.

[46]  N. Patron,et al.  Gene Replacement of Fructose-1,6-Bisphosphate Aldolase Supports the Hypothesis of a Single Photosynthetic Ancestor of Chromalveolates , 2004, Eukaryotic Cell.

[47]  T. Cavalier-smith,et al.  Combined Heat Shock Protein 90 and Ribosomal RNA Sequence Phylogeny Supports Multiple Replacements of Dinoflagellate Plastids , 2006, The Journal of eukaryotic microbiology.

[48]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[49]  Y. Inagaki,et al.  Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages , 2007, Current Biology.

[50]  G. Hansen,et al.  Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov. (=Gymnodinium chlorophorum) , 2007 .

[51]  Nicola J Patron,et al.  A Transcriptional Fusion of Genes Encoding Glyceraldehyde‐3‐Phosphate Dehydrogenase (GAPDH) and Enolase in Dinoflagellates , 2005, The Journal of eukaryotic microbiology.

[52]  A. Uchida,et al.  Origin of the plastid in the anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta) as inferred from phylogenetic analysis based on the gene encoding the large subunit of form I‐type RuBisCO , 2000 .

[53]  N. Patron,et al.  Transit peptide diversity and divergence: A global analysis of plastid targeting signals. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[54]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[55]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[56]  P. Keeling,et al.  The Evolutionary History of Plastids: A Molecular Phylogenetic Perspective , 2004 .

[57]  Robert P. Hirt,et al.  Organelles, Genomes and Eukaryote Phylogeny : An Evolutionary Synthesis in the Age of Genomics , 2004 .

[58]  Y. Takano,et al.  Serial replacement of a diatom endosymbiont in the marine dinoflagellate Peridinium quinquecorne (Peridiniales, Dinophyceae) , 2006 .

[59]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[60]  W. Martin,et al.  A nuclear gene of eubacterial origin in Euglena gracilis reflects cryptic endosymbioses during protist evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[62]  A. Uchida,et al.  Preliminary phylogenetic analysis of plastid‐encoded genes from an anomalously pigmented dinoflagellate Gymnodinium mikimotoi (Gymnodiniales, Dinophyta) , 1999 .

[63]  A. Uchida,et al.  Molecular cloning and nucleotide sequence analysis of psbA from the dinoflagellates: Origin of the dinoflagellate plastid , 1999 .

[64]  K. Ishida Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids , 2005, Journal of Plant Research.

[65]  A. Bodyl,et al.  Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis , 2006 .

[66]  D. Morse,et al.  The Phylogeny of Glyceraldehyde-3-Phosphate Dehydrogenase Indicates Lateral Gene Transfer from Cryptomonads to Dinoflagellates , 1998, Journal of Molecular Evolution.

[67]  E. Schnepf,et al.  Gymnodinium chlorophorum, a new, green, bloom-forming dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont , 1996 .

[68]  T. Cavalier-smith,et al.  Phylogeny of Ultra-Rapidly Evolving Dinoflagellate Chloroplast Genes: A Possible Common Origin for Sporozoan and Dinoflagellate Plastids , 2000, Journal of Molecular Evolution.

[69]  S. Schwartzbach,et al.  The Polyprotein Precursor to the Euglena Light-harvesting Chlorophyll a/b-binding Protein Is Transported to the Golgi Apparatus Prior to Chloroplast Import and Polyprotein Processing (*) , 1995, The Journal of Biological Chemistry.

[70]  L. Valle,et al.  Pyramimonas australis sp. nov. (Prasinophyceae, Chlorophyta) from Antarctica: fine structure and molecular phylogeny , 2002 .

[71]  H. Brinkmann,et al.  Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. , 2007, Protist.

[72]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[73]  M. Kawachi,et al.  INDUCED DIMORPHIC LIFE CYCLE OF A COCCOLITHOPHORID, CALYPTROSPHAERA SPHAEROIDEA (PRYMNESIOPHYCEAE, HAPTOPHYTA) 1 , 2004 .

[74]  A. Bodyl DO PLASTID‐RELATED CHARACTERS SUPPORT THE CHROMALVEOLATE HYPOTHESIS? 1 , 2005 .

[75]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[76]  D. Morse,et al.  Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. , 2005, Biochimica et biophysica acta.

[77]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[78]  H. Brinkmann,et al.  The GapA/B gene duplication marks the origin of Streptophyta (charophytes and land plants). , 2006, Molecular biology and evolution.