Revealing fermionic quantum criticality from new Monte Carlo techniques

This review summarizes recent developments in the study of fermionic quantum criticality, focusing on new progress in numerical methodologies, especially quantum Monte Carlo methods, and insights that emerged from recently large-scale numerical simulations. Quantum critical phenomena in fermionic systems have attracted decades of extensive research efforts, partially lured by their exotic properties and potential technology applications, and partially awakened by the profound and universal fundamental principles that govern these quantum critical systems. Due to the complex and non-perturbative nature, these systems face the most difficult and challenging problems in the study of modern condensed matter physics, and many important fundamental problems remain open. Recently, new developments in model design and algorithm improvements enabled unbiased large-scale numerical solutions to be achieved in the close vicinity of these quantum critical points, which paves a new pathway towards achieving controlled conclusions through combined efforts of theoretical and numerical studies, as well as possible theoretical guidance for experiments in heavy-fermion compounds, Cu-based and Fe-based superconductors, ultra-cold fermionic atomic gas, twisted graphene layers, etc, where signatures of fermionic quantum criticality exist.

[1]  A. Millis,et al.  Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. , 1993, Physical review. B, Condensed matter.

[2]  T. Devereaux,et al.  Breakdown of the Migdal-Eliashberg theory: A determinant quantum Monte Carlo study , 2017, 1711.01493.

[3]  Xiao Yan Xu,et al.  Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases , 2018, Physical Review X.

[4]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[5]  Sung-Sik Lee,et al.  Emergence of a control parameter for the antiferromagnetic quantum critical metal , 2017, 1701.08218.

[6]  X. Wen,et al.  Spin correlations in the algebraic spin liquid: Implications for high-Tc superconductors , 2002, cond-mat/0201521.

[7]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[8]  D. Maslov,et al.  Spin conservation and Fermi liquid near a ferromagnetic quantum critical point. , 2009, Physical review letters.

[9]  Matthew P. A. Fisher,et al.  Z_2 Gauge Theory of Electron Fractionalization in Strongly Correlated Systems , 2000 .

[10]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[11]  Hirsch Two-dimensional Hubbard model: Numerical simulation study. , 1985, Physical review. B, Condensed matter.

[12]  Sung-Sik Lee,et al.  Perturbative non-Fermi liquids from dimensional regularization , 2013, Physical Review B.

[13]  Arnab Sen,et al.  Duality between the deconfined quantum-critical point and the bosonic topological transition , 2017, 1705.10670.

[14]  A. Chubukov,et al.  Instability of the quantum-critical point of itinerant ferromagnets. , 2003, Physical review letters.

[15]  S. Gazit,et al.  Fermi Surface Reconstruction without Symmetry Breaking , 2019, Physical Review X.

[16]  Yang Qi,et al.  Dynamical Signature of Symmetry Fractionalization in Frustrated Magnets. , 2018, Physical review letters.

[17]  Sung-Sik Lee Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions , 2009, 0905.4532.

[18]  S. Sachdev,et al.  Quantum Phase Transitions of Metals in Two Spatial Dimensions: II. Spin density Wave Order , 2010, 1005.1288.

[19]  M. Salmhofer,et al.  Functional renormalization group approach to correlated fermion systems , 2011, 1105.5289.

[20]  L. Janssen,et al.  Critical behavior of the QED 3 -Gross-Neveu model: Duality and deconfined criticality , 2017, 1708.02256.

[21]  Anders W. Sandvik,et al.  The Directed‐Loop Algorithm , 2003 .

[22]  A. Vishwanath,et al.  Unifying description of competing orders in two-dimensional quantum magnets , 2018, Nature Communications.

[23]  Sung-Sik Lee Recent Developments in Non-Fermi Liquid Theory , 2017, 1703.08172.

[24]  Xiao Yan Xu,et al.  Dynamics of compact quantum electrodynamics at large fermion flavor , 2019, Physical Review B.

[25]  R. Scalettar,et al.  Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model , 2013, 1306.2968.

[26]  E. Berg,et al.  Sign-Problem–Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals , 2012, Science.

[27]  守谷 亨 Spin fluctuations in itinerant electron magnetism , 1985 .

[28]  R. Scalettar,et al.  Charge Order in the Holstein Model on a Honeycomb Lattice. , 2018, Physical review letters.

[29]  H. Evertz,et al.  The loop algorithm , 2003 .

[30]  Accelerated Langevin simulations of lattice QCD and other models , 1987 .

[31]  S. Andergassen,et al.  Soft fermi surfaces and breakdown of Fermi-liquid behavior. , 2003, Physical review letters.

[32]  E. Berg,et al.  Ising nematic quantum critical point in a metal: a Monte Carlo study , 2015, 1511.03282.

[33]  S. Sachdev,et al.  Density-wave instabilities of fractionalized Fermi liquids , 2014, 1409.5430.

[34]  Xiao Yan Xu,et al.  Non-Fermi Liquid at ( 2+1 ) D Ferromagnetic Quantum Critical Point , 2016, 1612.06075.

[35]  Superconductivity in the vicinity of antiferromagnetic order in CrAs. , 2014, Nature communications.

[36]  Yoshinori Takahashi,et al.  Spin fluctuations in itinerant electron magnetism , 1985 .

[37]  Sung-Sik Lee,et al.  Anisotropic non-Fermi liquids , 2016, 1606.06694.

[38]  Youjin Deng,et al.  Dynamics of Topological Excitations in a Model Quantum Spin Ice. , 2017, Physical review letters.

[39]  Liang Fu,et al.  Self-learning Monte Carlo with deep neural networks , 2018, Physical Review B.

[40]  N. Nagaosa,et al.  SU(2) formulation of the t−J model: Application to underdoped cuprates , 1997, cond-mat/9701168.

[41]  S. Sachdev,et al.  Quantum phase transitions of metals in two spatial dimensions: I. Ising-nematic order , 2010, 1001.1153.

[42]  W. Metzner,et al.  Anomalous dynamical scaling from nematic and U(1)-gauge field fluctuations in two dimensional metals , 2015, 1503.05089.

[43]  T. Grover,et al.  Simple Fermionic Model of Deconfined Phases and Phase Transitions , 2016, 1607.03912.

[44]  Sung-Sik Lee,et al.  Exact Critical Exponents for the Antiferromagnetic Quantum Critical Metal in Two Dimensions , 2016, 1608.06927.

[45]  R. Moessner,et al.  Interplay of quantum and thermal fluctuations in a frustrated magnet , 2003 .

[46]  Z. Meng,et al.  Quantum Spin Liquid with Even Ising Gauge Field Structure on Kagome Lattice. , 2017, Physical review letters.

[47]  A. Sandvik,et al.  Dynamical signature of fractionalization at a deconfined quantum critical point , 2018, Physical Review B.

[48]  M. Paranjape,et al.  Transition from a Dirac spin liquid to an antiferromagnet: Monopoles in a QED3 -Gross-Neveu theory , 2019, Physical Review B.

[49]  M. Scherer,et al.  Deconfined criticality from the QED3 -Gross-Neveu model at three loops , 2018, Physical Review B.

[50]  T. Han,et al.  Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet , 2015, Science.

[51]  Evidence for deconfined quantum criticality in a two-dimensional Heisenberg model with four-spin interactions. , 2006, Physical review letters.

[52]  Troels Arnfred Bojesen,et al.  Policy-guided Monte Carlo: Reinforcement-learning Markov chain dynamics , 2018, Physical Review E.

[53]  M. Randeria,et al.  Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories , 2017, Nature Physics.

[54]  Quantum theory of a nematic Fermi fluid , 2001, cond-mat/0102093.

[55]  M. Stone,et al.  Evolution of Magnetic Double Helix and Quantum Criticality near a Dome of Superconductivity in CrAs , 2018, Physical Review X.

[56]  M. Fisher,et al.  Pyrochlore photons: The U ( 1 ) spin liquid in a S = 1 2 three-dimensional frustrated magnet , 2003, cond-mat/0305401.

[57]  Sung-Sik Lee,et al.  Noncommutativity between the low-energy limit and integer dimension limits in the ε expansion: A case study of the antiferromagnetic quantum critical metal , 2018, Physical Review B.

[58]  Xiao Yan Xu,et al.  Symmetry-enforced self-learning Monte Carlo method applied to the Holstein model , 2018, Physical Review B.

[59]  Peter Marquard,et al.  Four-loop critical exponents for the Gross-Neveu-Yukawa models , 2017, 1709.05057.

[60]  T. Senthil Critical Fermi surfaces and non-Fermi liquid metals , 2008, 0803.4009.

[61]  Wen,et al.  Mean-field theory of spin-liquid states with finite energy gap and topological orders. , 1991, Physical review. B, Condensed matter.

[62]  Anyi Li,et al.  Quantum critical behavior in three dimensional lattice Gross-Neveu models , 2013, 1304.7761.

[63]  A. Polyakov Quark confinement and topology of gauge theories , 1977 .

[64]  Z. Meng,et al.  Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states , 2015, 1508.06389.

[65]  R. Scalettar,et al.  Langevin simulations of a long-range electron-phonon model , 2018, Physical Review B.

[66]  Leon Balents,et al.  Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm , 2004 .

[67]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[68]  Xiao Yan Xu,et al.  Itinerant quantum critical point with fermion pockets and hotspots , 2018, Proceedings of the National Academy of Sciences.

[69]  G. Stewart Non-Fermi-liquid behavior in d - and f -electron metals , 2001 .

[70]  P. Marquard,et al.  Critical behavior of the QED3 -Gross-Neveu-Yukawa model at four loops , 2018, Physical Review B.

[71]  Xiao Yan Xu,et al.  Itinerant quantum critical point with frustration and a non-Fermi liquid , 2017, Physical Review B.

[72]  Monopoles and chiral-symmetry breaking in three-dimensional lattice QED. , 1990, Physical review. D, Particles and fields.

[73]  A. Burkitt,et al.  GLUEBALLS IN 3D QED WITH AND WITHOUT DYNAMICAL FERMIONS , 1988 .

[74]  Z. Meng,et al.  Quantum spin liquid emerging in two-dimensional correlated Dirac fermions , 2010, Nature.

[75]  M. Hohenadler,et al.  Autocorrelations in Quantum Monte Carlo Simulations of Electron-Phonon Models , 2008 .

[76]  Dung-Hai Lee,et al.  Enhancement of superconductivity by frustrating the charge order , 2019, Physical Review B.

[77]  Z. Meng,et al.  Effect of Nematic Order on the Low-Energy Spin Fluctuations in Detwinned BaFe_{1.935}Ni_{0.065}As_{2}. , 2016, Physical review letters.

[78]  B. Erez,et al.  Quantum critical properties of a metallic spin-density-wave transition , 2017 .

[79]  Xiao Yan Xu,et al.  Elective-momentum ultrasize quantum Monte Carlo method , 2017, Physical Review B.

[80]  S. Trebst,et al.  Competing Orders in a Nearly Antiferromagnetic Metal. , 2015, Physical review letters.

[81]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[82]  M. Nicklas,et al.  Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−xAsx)2 , 2013, Science.

[83]  Yang Qi,et al.  Caution on emergent continuous symmetry: A Monte Carlo investigation of the transverse-field frustrated Ising model on the triangular and honeycomb lattices , 2016, 1602.02839.

[84]  Pressure induced superconductivity on the border of magnetic order in MnP. , 2014, Physical review letters.

[85]  A. Vishwanath,et al.  From Spinon Band Topology to the Symmetry Quantum Numbers of Monopoles in Dirac Spin Liquids , 2018, Physical Review X.

[86]  S. Sachdev,et al.  Cooper pairing in non-Fermi liquids , 2015 .

[87]  R. Scalettar,et al.  Phonon Dispersion and the Competition between Pairing and Charge Order. , 2017, Physical review letters.

[88]  E. Berg,et al.  Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point , 2016, Proceedings of the National Academy of Sciences.

[89]  T. Pruschke,et al.  Lifshitz transition in the two-dimensional Hubbard model , 2012, 1207.0796.

[90]  J. Maciejko,et al.  Deconfined criticality in the QED3 Gross-Neveu-Yukawa model: The 1/N expansion revisited , 2018, Physical Review B.

[91]  R. Sugar,et al.  Monte Carlo calculations of coupled boson-fermion systems. I , 1981 .

[92]  M. Vojta,et al.  Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.

[93]  Dung-Hai Lee,et al.  What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study , 2015, Science bulletin.

[94]  Jian-lin Luo,et al.  Pressure-induced superconductivity in CrAs and MnP , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[95]  Yang Qi,et al.  Self-learning Monte Carlo method and cumulative update in fermion systems , 2017 .

[96]  J. Gracey Fermion bilinear operator critical exponents at O(1/N2) in the QED-Gross-Neveu universality class , 2018, Physical Review D.

[97]  J. E. Hirsch,et al.  Discrete Hubbard-Stratonovich transformation for fermion lattice models , 1983 .

[98]  Xiao Yan Xu,et al.  Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons. , 2018, Physical review letters.

[99]  J. Schmalian,et al.  Quantum-critical theory of the spin-fermion model and its application to cuprates: Normal state analysis , 2001, cond-mat/0107421.

[100]  Dung-Hai Lee,et al.  Enhancement of superconductivity by frustrating the charge order , 2018, Physical Review B.

[101]  Yang Qi,et al.  Self-learning Monte Carlo method: Continuous-time algorithm , 2017, 1705.06724.

[102]  Z. Meng,et al.  Unified Phase Diagram for Iron-Based Superconductors. , 2017, Physical review letters.

[103]  The break-up of heavy electrons at a quantum critical point , 2003, Nature.

[104]  H. Evertz,et al.  World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons , 2008 .

[105]  A. Abanov,et al.  Anomalous scaling at the quantum critical point in itinerant antiferromagnets. , 2004, Physical review letters.

[106]  R. Moessner,et al.  Ising models of quantum frustration , 2000, cond-mat/0011250.

[107]  X. -. Wang,et al.  Electron Mass Enhancement near a Nematic Quantum Critical Point in NaFe_{1-x}Co_{x}As. , 2018, Physical review letters.

[108]  R. T. Scalettar,et al.  Quantum Monte Carlo study of the two-dimensional fermion Hubbard model , 2009, 0903.2519.

[109]  Yang Qi,et al.  Self-learning quantum Monte Carlo method in interacting fermion systems , 2017 .

[110]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[111]  Feng Liu,et al.  Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu3Zn(OH)6FBr* , 2017, 1702.01658.

[112]  Xiao Yan Xu,et al.  Dynamical Generation of Topological Masses in Dirac Fermions , 2017, 1705.09192.

[113]  M. Fisher,et al.  Erratum: Algebraic spin liquid as the mother of many competing orders [Phys. Rev. B 72, 104404 (2005)] , 2007, 0709.3032.

[114]  S. Gazit,et al.  Confinement transition of ℤ2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and SO(5) symmetry , 2018, Proceedings of the National Academy of Sciences.

[115]  P. Marquard,et al.  Critical properties of the Néel–algebraic-spin-liquid transition , 2019, Physical Review B.