Knowledge Science and Technology : Operationalizing the Enlightenment

The aspirations and achievements of research and applications in knowledge-based systems are reviewed and placed in the context of the evolution of information technology, and our understanding of human expertise and knowledge processes. Future developments are seen as a continuation of a long-term process of operationalizing the rational stance to human knowledge processes adopted in the enlightenment, involving further diffusion of artificial intelligence technologies into mainstream computer applications, and incorporation of deeper models of human psychological and social processes.

[1]  Brian R. Gaines,et al.  KITTEN: Knowledge Initiation and Transfer Tools for Experts and Novices , 1987, Int. J. Man Mach. Stud..

[2]  Brian R. Gaines,et al.  Using Knowledge Acquisition and Representation Tools to Support Scientific Communities , 1994, AAAI.

[3]  Thomas G. Dietterich,et al.  A Comparative Study of ID3 and Backpropagation for English Text-to-Speech Mapping , 1990, ML.

[4]  Diana Crane,et al.  Invisible colleges. Diffusion of knowledge in scientific communities , 1972, Medical History.

[5]  C. J. Date What Not How: The Business Rules Approach to Application Development , 2000 .

[6]  Joan N. Vickers,et al.  Instructional Design for Teaching Physical Activities: A Knowledge Structures Approach. , 1990 .

[7]  Brian R. Gaines,et al.  The collective stance in modeling expertise in individuals and organizations , 1994 .

[8]  Bernhard Nebel,et al.  Terminological Reasoning is Inherently Intractable , 1990, Artif. Intell..

[9]  Michael Friedman,et al.  Reconsidering Logical Positivism , 1999 .

[10]  G. Klir IDENTIFICATION OF GENERATIVE STRUCTURES IN EMPIRICAL DATA , 1976 .

[11]  Pat Langley,et al.  The computational support of scientific discovery , 2000, Int. J. Hum. Comput. Stud..

[12]  Gale E. Christianson,et al.  The Scientific Revolution: A Historiographical Inquiry , 1996 .

[13]  Bruce G. Buchanan,et al.  An application of artificial intelligence to the interpretation of mass spectra. , 1971 .

[14]  Hubert L. Dreyfus,et al.  Mind over Machine: The Power of Human Intuition and Expertise in the Era of the Computer , 1987, IEEE Expert.

[15]  A. Kitchen,et al.  Knowledge based systems in artificial intelligence , 1985, Proceedings of the IEEE.

[16]  William J. Clancey Viewing knowledge bases as qualitative models , 1989, IEEE Expert.

[17]  Simon Kirby,et al.  Function, Selection, and Innateness: The Emergence of Language Universals , 1999 .

[18]  Anne Morris,et al.  Knowledge Management Toolkit , 2001 .

[19]  H. Rosenkranz,et al.  Carcinogenicity predictions for a group of 30 chemicals undergoing rodent cancer bioassays based on rules derived from subchronic organ toxicities. , 1996, Environmental health perspectives.

[20]  A. Tversky,et al.  Support theory: A nonextensional representation of subjective probability. , 1994 .

[21]  P. Bourdieu In Other Words , 1990 .

[22]  Brian R. Gaines,et al.  Sixth generation computing: a conspectus of the Japanese proposals , 1986, SGAR.

[23]  Henrik Eriksson,et al.  Reusable ontologies, knowledge-acquisition tools, and performance systems: PROTÉGÉ-II solutions to Sisyphus-2 , 1996, Int. J. Hum. Comput. Stud..

[24]  J. Meister,et al.  Corporate universities : lessons in building a world-class work force , 1998 .

[25]  Manuel Blum,et al.  Toward a Mathematical Theory of Inductive Inference , 1975, Inf. Control..

[26]  A. Samuel,et al.  Whither speech recognition? , 1969, The Journal of the Acoustical Society of America.

[27]  J. Searle Mind, Language, And Society: Philosophy In The Real World , 1998 .

[28]  Brian R. Gaines Integrating Rules in Term Subsumption Knowledge Representation Servers , 1991, AAAI.

[29]  Brian R. Gaines,et al.  Transforming Rules and Trees into Comprehensible Knowledge Structures , 2000 .

[30]  Karl R. Popper,et al.  Epistemology Without a Knowing Subject , 1968 .

[31]  Brian R. Gaines,et al.  Positive feedback processes underlying the formation of expertise , 1988, IEEE Trans. Syst. Man Cybern..

[32]  J. Sayers Against Method , 2016 .

[33]  Werner Nutt,et al.  The Complexity of Concept Languages , 1997, KR.

[34]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[35]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[36]  Martin Davis,et al.  The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions , 2004 .

[37]  Yoav Ben-Shlomo,et al.  The Mind within the Net: Models of Learning, Thinking and Acting , 2000, BMJ : British Medical Journal.

[38]  James Fleck,et al.  Development and Establishment in Artificial Intelligence , 1982 .

[39]  Brian R. Gaines Social and cognitive processes in knowledge acquisition , 1989 .

[40]  B. Gaines,et al.  Knowledge Acquisition , Modeling and Inference through the World Wide Web , 1997 .

[41]  Raymond A. Eve,et al.  Chaos, complexity, and sociology : myths, models, and theories , 1998 .

[42]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[43]  Ashwin Srinivasan,et al.  Ripple down rules: Turning knowledge acquisition into knowledge maintenance , 1992, Artif. Intell. Medicine.

[44]  Debbie Richards,et al.  Taking up the situated cognition challenge with ripple down rules , 1998, Int. J. Hum. Comput. Stud..

[45]  T. Moto-Oka,et al.  Fifth Generation Computer Systems , 1982 .

[46]  Arthur Stutt,et al.  Solving VT in VITAL: a study in model construction and knowledge reuse , 1996, Int. J. Hum. Comput. Stud..

[47]  D. Meadows,et al.  Beyond the limits: confronting global collapse envisioning a sustainable future. , 1992 .

[48]  B. Gaines SYSTEM IDENTIFICATION, APPROXIMATION AND COMPLEXITY , 1977 .

[49]  Brian R. Gaines,et al.  Modeling and forecasting the information sciences , 1991, Inf. Sci..

[50]  Brian R. Gaines,et al.  A learning model for forecasting the future of information technology , 1986 .

[51]  P. Compton,et al.  A philosophical basis for knowledge acquisition , 1990 .

[52]  J. Alford,et al.  REAL REWARDS FROM ARTIFICIAL INTELLIGENCE , 1999 .

[53]  John R. Searle,et al.  The Rediscovery of the Mind , 1995, Artif. Intell..

[54]  Ryszard S. Michalski,et al.  Knowledge acquisition by encoding expert rules versus computer induction from examples: a case study involving soybean pathology , 1999, Int. J. Hum. Comput. Stud..

[55]  Emile Kay Technological Substitution—Forecasting Techniques and Applications , 1977 .

[56]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[57]  E. Jephcott,et al.  Dialectic of Enlightenment , 2002 .

[58]  Yehoshua Bar-Hillel,et al.  Language and information : selected essays on their theory and application , 1965 .

[59]  John Ralston Saul,et al.  Voltaire's Bastards : The Dictatorship of Reason in the West , 1992 .

[60]  Georg von Krogh,et al.  Enabling Knowledge Creation: How to Unlock the Mystery of Tacit Knowledge and Release the Power of Innovation , 2000 .

[61]  Douglas Hackney Understanding and Implementing Successful Data Marts , 1997 .

[62]  Byeong Ho Kang,et al.  Multiple Classification Ripple Down Rules : Evaluation and Possibilities , 2000 .

[63]  Brian R. Gaines,et al.  Knowledge-support systems , 1990, Knowl. Based Syst..

[64]  Michael T. Turvey,et al.  The ecological approach to perception , 2002 .

[65]  Richard Fikes,et al.  The Ontolingua Server: a tool for collaborative ontology construction , 1997, Int. J. Hum. Comput. Stud..

[66]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[67]  Brian R. Gaines,et al.  The learning curves underlying convergence , 1998 .

[68]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[69]  J. Elman,et al.  Rethinking Innateness: A Connectionist Perspective on Development , 1996 .

[70]  Ramanathan V. Guha,et al.  Building large knowledge-based systems , 1989 .

[71]  Saul Kripke Wittgenstein on Rules and Private Language: An Elementary Exposition , 1984 .

[72]  Jonathan Schaeffer,et al.  Kasparov versus Deep Blue: The Rematch , 1997, J. Int. Comput. Games Assoc..

[73]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[74]  William J. Clancey,et al.  The knowledge level reinterpreted: Modeling socio‐technical systems , 1993, Int. J. Intell. Syst..

[75]  Tim Berners-Lee,et al.  Information Management: A Proposal , 1990 .

[76]  H. Gadamer,et al.  Wahrheit und Methode , 1960 .

[77]  Monty Newborn,et al.  Kasparov versus Deep Blue - computer chess comes of age , 1996 .

[78]  Robin R. Vallacher,et al.  Dynamical Systems in Social Psychology , 1994 .

[79]  Paul R. Cohen,et al.  The DARPA High-Performance Knowledge Bases Project , 1998, AI Mag..

[80]  David Hawkins,et al.  An Analysis of Expert Thinking , 1983, Int. J. Man Mach. Stud..

[81]  H. Borko,et al.  Computer power and human reason: From judgement to calculation , 1976 .

[82]  Дрейфус Хьюберт,et al.  Чего не могут вычислительные машины: Критика искусственного разума. (What computers cant do: A critique of artificial reason) , 1978 .

[83]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[84]  H. Sacks,et al.  Readings in Medical Artificial Intelligence: The First Decade , 1985 .

[85]  Translator-IEEE Expert staff Machine Learning: A Theoretical Approach , 1992, IEEE Expert.

[86]  Gordon Wills Knowledge Game: The Revolution in Learning and Communication in the WorkPlace , 1998 .

[87]  A. Kellerman,et al.  The Constitution of Society : Outline of the Theory of Structuration , 2015 .

[88]  W. Volkheimer,et al.  Southern Hemisphere paleo- and neoclimates : key sites, methods, data and models , 2000 .

[89]  Anthony Preus,et al.  Intellectual Experiments of the Greek Enlightenment , 1976 .

[90]  S. Cole,et al.  : A Social History of Truth: Civility and Science in Seventeenth-Century England , 1996 .