Systematic construction of upwind constrained transport schemes for MHD

Abstract The constrained transport (CT) method reflects the state of the art numerical technique for preserving the divergence-free condition of magnetic field to machine accuracy in multi-dimensional MHD simulations performed with Godunov-type, or upwind, conservative codes. The evolution of the different magnetic field components, located at zone interfaces using a staggered representation, is achieved by calculating the electric field components at cell edges, in a way that has to be consistent with the Riemann solver used for the update of cell-centered fluid quantities at interfaces. Albeit several approaches have been undertaken, the purpose of this work is, on the one hand, to compare existing methods in terms of robustness and accuracy and, on the other, to extend the upwind contrained transport (UCT) method by Londrillo & Del Zanna (2004) and Del Zanna et al. (2007) for the systematic construction of new averaging schemes. In particular, we propose a general formula for the upwind fluxes of the induction equation which simply involves the information available from the base Riemann solver employed for the fluid part, provided it does not require full spectral decomposition, and 1D reconstructions of velocity and magnetic field components from nearby intercell faces to cell edges. Our results are presented here in the context of second-order schemes for classical MHD, but they can be easily generalized to higher than second order schemes, either based on finite volumes or finite differences, and to other physical systems retaining the same structure of the equations, such as that of relativistic or general relativistic MHD.

[1]  Dinshaw S. Balsara,et al.  Efficient, divergence-free, high-order MHD on 3D spherical meshes with optimal geodesic meshing , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[3]  A. Mignone,et al.  SYMMETRIES, SCALING LAWS, AND CONVERGENCE IN SHEARING-BOX SIMULATIONS OF MAGNETO-ROTATIONAL INSTABILITY DRIVEN TURBULENCE , 2011, 1106.5727.

[4]  C. Richard DeVore,et al.  Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics , 1989 .

[5]  Katharine Gurski,et al.  An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..

[6]  P. Londrillo,et al.  On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .

[7]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows – II. Magnetohydrodynamics , 2006 .

[8]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[9]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[10]  G. Bodo,et al.  An HLLC Solver for Relativistic Flows – II . , 2006 .

[11]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[12]  M. Stute,et al.  A conservative orbital advection scheme for simulations of magnetized shear flows with the PLUTO code , 2012, 1207.2955.

[13]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[14]  Claus-Dieter Munz,et al.  Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .

[15]  A. Miura,et al.  Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. [solar wind-magnetosphere interaction] , 1982 .

[16]  Daniel C. M. Palumbo,et al.  The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project , 2019, The Astrophysical Journal Supplement Series.

[17]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[18]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[19]  Dongwook Lee,et al.  An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics , 2009, J. Comput. Phys..

[20]  J. Teissier,et al.  Fourth-order accurate finite-volume CWENO scheme for astrophysical MHD problems , 2015, Monthly Notices of the Royal Astronomical Society.

[21]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[22]  James A. Rossmanith,et al.  An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..

[23]  Michael Dumbser,et al.  A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems , 2016, J. Comput. Phys..

[24]  Andrea Mignone,et al.  A five‐wave Harten–Lax–van Leer Riemann solver for relativistic magnetohydrodynamics , 2009 .

[25]  Shengtai Li An HLLC Riemann solver for magneto-hydrodynamics , 2005 .

[26]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[27]  Dinshaw S. Balsara,et al.  Multidimensional Riemann problem with self-similar internal structure. Part I - Application to hyperbolic conservation laws on structured meshes , 2014, J. Comput. Phys..

[28]  Dinshaw S. Balsara,et al.  Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers , 2017, J. Comput. Phys..

[29]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[30]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[31]  Andrea Mignone,et al.  High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..

[32]  Andrea Mignone A simple and accurate Riemann solver for isothermal MHD , 2007, J. Comput. Phys..

[33]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[34]  Yosuke Matsumoto,et al.  A High-order Weighted Finite Difference Scheme with a Multistate Approximate Riemann Solver for Divergence-free Magnetohydrodynamic Simulations , 2019, The Astrophysical Journal Supplement Series.

[35]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[36]  James Stone,et al.  A fourth-order accurate finite volume method for ideal MHD via upwind constrained transport , 2017, J. Comput. Phys..

[37]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[38]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[39]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .

[40]  Eleuterio F. Toro,et al.  MUSTA fluxes for systems of conservation laws , 2006, J. Comput. Phys..

[41]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[42]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[43]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[44]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[45]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[46]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[47]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[48]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[49]  Dinshaw S. Balsara Higher-order accurate space-time schemes for computational astrophysics—Part I: finite volume methods , 2017, Living reviews in computational astrophysics.

[50]  Manuel Torrilhon,et al.  Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations , 2005, SIAM J. Sci. Comput..

[51]  L. Zanna,et al.  Fast Magnetic Reconnection: Secondary Tearing Instability and Role of the Hall Term , 2019, The Astrophysical Journal.

[52]  Christian Klingenberg,et al.  A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests , 2011, J. Comput. Phys..

[53]  John Lyon,et al.  A simulation study of east-west IMF effects on the magnetosphere , 1981 .

[54]  Phillip Colella,et al.  A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS , 2011 .

[55]  Bertram Taetz,et al.  An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations , 2010, J. Comput. Phys..

[56]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[57]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[58]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[59]  Marco Velli,et al.  RESISTIVE MAGNETOHYDRODYNAMICS SIMULATIONS OF THE IDEAL TEARING MODE , 2015, 1504.07036.

[60]  Michael Dumbser,et al.  Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes , 2015, J. Comput. Phys..

[61]  D. Psaltis,et al.  Angular Momentum Transport in Accretion Disks: Scaling Laws in MRI-driven Turbulence , 2007, 0705.0352.

[62]  Dinshaw S. Balsara,et al.  Multidimensional Riemann problem with self-similar internal structure - part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems , 2017, J. Comput. Phys..