Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data

We have used 10 years of ground-based data from the Global Positioning System (GPS) to estimate time series of the excess propagation path due to the gases in the neutral atmosphere. We first derive the excess path caused by water vapor which in turn is used to infer the water vapor content above each one of 33 GPS receiver sites in Finland and Sweden. Although a 10 year period is much too short to search for climate change we use the data set to assess the stability and consistency of the linear trend of the water vapor content that can be estimated from the data. The linear trends in the integrated water vapor content range from -0.2 to +1.0 kg m-2 decade-1. As one may expect we find different systematic patterns for summer and winter data. The formal uncertainty of these trends, taking the temporal correlation of the variability about the estimated model into account, are of the order of 0.4 kg m-2 decade-1. Mostly, this uncertainty is due to the natural short-term variability in the water vapor content, while the formal uncertainties in the GPS measurements have only a small impact on the trend errors.

[1]  M. Rothacher,et al.  Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites , 2003 .

[2]  Michael F. Wehner,et al.  Relationship between temperature and precipitable water changes over tropical oceans , 2007 .

[3]  T. Herring,et al.  Introduction to GAMIT/GLOBK , 2006 .

[4]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[5]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[6]  W. Elliott,et al.  Tropospheric Water Vapor Climatology and Trends over North America: 1973–93 , 1996 .

[7]  Barry E. Schwartz,et al.  Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA Forecast Systems Laboratory: Impact on weather forecasts , 2004 .

[8]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[9]  On the importance of proper noise modelling for long-term precipitable water vapour trend estimations , 2007 .

[10]  Jan M. Johansson,et al.  Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers , 1998 .

[11]  Jan M. Johansson,et al.  Assessing Long Term Trends in the Atmospheric Water Vapor Content by Combining Data From VLBI, GPS, Radiosondes and Microwave Radiometry , 2003 .

[12]  K. Hocke Phase estimation with the Lomb-Scargle periodogram method , 1998 .

[13]  S. Hagemann,et al.  Can climate trends be calculated from reanalysis data , 2004 .

[14]  K. Trenberth,et al.  The changing character of precipitation , 2003 .

[15]  Gunnar Elgered,et al.  Climate monitoring using GPS , 2002 .

[16]  Gunnar Elgered,et al.  Tropospheric Radio-Path Delay from Groundbased Microwave Radiometry , 1993 .

[17]  Stephen M. Lichten,et al.  Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements , 1990 .

[18]  M. Lidberg Geodetic Reference Frames in Presence of Crustal Deformations , 2007 .

[19]  M. Hernández‐Pajares,et al.  Second-order ionospheric term in GPS : Implementation and impact on geodetic estimates , 2007 .

[20]  Ragne Emardson,et al.  The systematic behavior of water vapor estimates using four years of GPS observations , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  Tobias Nilsson,et al.  Temporal correlations of atmospheric mapping function errors in GPS estimation , 2007 .

[22]  Gerd Gendt,et al.  On the determination of atmospheric water vapor from GPS measurements , 2003 .

[23]  Junhong Wang,et al.  Global estimates of water‐vapor‐weighted mean temperature of the atmosphere for GPS applications , 2005 .

[24]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[25]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[26]  Viju O. John,et al.  Recent developments in the line-by-line modeling of outgoing longwave radiation , 2006 .

[27]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[28]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[29]  T. Emardson,et al.  On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere , 2000 .

[30]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[31]  W. Elliott,et al.  Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends , 2001 .

[32]  Shuanggen Jin,et al.  Seasonal variability of GPS‐derived zenith tropospheric delay (1994–2006) and climate implications , 2007 .

[33]  Peter Steigenberger,et al.  Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients , 2007 .

[34]  Camilla Granström,et al.  Site-Dependent Effects in High-Accuracy Applications of GNSS , 2006 .

[35]  Jan M. Johansson,et al.  An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia , 2007 .

[36]  Kevin E. Trenberth,et al.  Trends and variability in column-integrated atmospheric water vapor , 2005 .

[37]  J Johansson Continuous GPS measurement of postglacial adjustment in Fennoscandia, 1. , 2002 .

[38]  W. Elliott,et al.  Recent Changes in NWS Upper-Air Observations with Emphasis on Changes from VIZ to Vaisala Radiosondes , 2002 .