The converging-input converging-state property for Lur’e systems

Using methods from classical absolute stability theory, combined with recent results on input-to-state stability (ISS) of Lur’e systems, we derive necessary and sufficient conditions for a class of Lur’e systems to have the converging-input converging-state (CICS) property. In particular, we provide sufficient conditions for CICS which are reminiscent of the complex Aizerman conjecture and the circle criterion and connections are also made with small gain ISS theorems. The penultimate section of the paper is devoted to non-negative Lur’e systems which arise naturally in, for example, ecological and biochemical applications: the main result in this context is a sufficient criterion for a so-called “quasi CICS” property for Lur’e systems which, when uncontrolled, admit two equilibria. The theory is illustrated with numerous examples.

[1]  Nathan van de Wouw,et al.  Convergent systems vs. incremental stability , 2013, Syst. Control. Lett..

[2]  I. W. Sandberg,et al.  Steady-state errors in nonlinear control systems , 1992 .

[3]  Eduardo D. Sontag,et al.  Well-defined steady-state response does not imply CICS , 2006, Syst. Control. Lett..

[4]  Brian Dennis,et al.  Allee Effects in Ecology and Conservation BY FRANCK COURCHAMP, LUDEK BEREC AND JOANNA GASCOIGNE x + 256 pp., 24 × 16 × 1.5 cm, ISBN 978 0 19 857030 1 hardback, GB£ 44.95, Oxford, UK: Oxford University Press, 2008 , 2009, Environmental Conservation.

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  M. R. Liberzon Essays on the absolute stability theory , 2006 .

[7]  Eduardo D. Sontag,et al.  Input to state stability and allied system properties , 2011 .

[8]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[9]  Hal L. Smith,et al.  PERSISTENCE AND GLOBAL STABILITY FOR A CLASS OF DISCRETE TIME STRUCTURED POPULATION MODELS , 2013 .

[10]  Eduardo D. Sontag A remark on the converging-input converging-state property , 2003, IEEE Trans. Autom. Control..

[11]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[12]  David Angeli,et al.  A small-gain theorem for almost global convergence of monotone systems , 2004, Syst. Control. Lett..

[13]  Zahra Aminzarey,et al.  Contraction methods for nonlinear systems: A brief introduction and some open problems , 2014, 53rd IEEE Conference on Decision and Control.

[14]  Stuart Townley,et al.  Feedback control systems analysis of density dependent population dynamics , 2012, Syst. Control. Lett..

[15]  D. S. Bernstein,et al.  Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[16]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[17]  Andrew R. Teel,et al.  Input-to-state stability for a class of Lurie systems , 2002, Autom..

[18]  Björn Rüffer,et al.  A Razumikhin approach for the incremental stability of delayed nonlinear systems , 2013, 52nd IEEE Conference on Decision and Control.

[19]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[20]  Christopher M. Kellett,et al.  A compendium of comparison function results , 2014, Math. Control. Signals Syst..

[21]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[22]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[23]  P. Olver Nonlinear Systems , 2013 .

[24]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[25]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[26]  V. Yakubovich,et al.  Stability of Stationary Sets in Control Systems With Discontinuous Nonlinearities , 2004, IEEE Transactions on Automatic Control.

[27]  Zhixin Tai Input-to-state stability for Lur'e stochastic distributed parameter control systems , 2012, Appl. Math. Lett..

[28]  W. Haddad,et al.  Nonnegative and Compartmental Dynamical Systems , 2010 .

[29]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems , 2006 .

[30]  Alexey S. Matveev,et al.  A non-quadratic criterion for stability of forced oscillations and its application to flight control , 2013 .

[31]  Bayu Jayawardhana,et al.  Input-to-State Stability of Differential Inclusions with Applications to Hysteretic and Quantized Feedback Systems , 2009, SIAM J. Control. Optim..

[32]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[33]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[34]  D. Bernstein,et al.  Explicit construction of quadratic lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. part II: Discrete-time theory , 1993 .

[35]  Diederich Hinrichsen,et al.  Destabilization by output feedback , 1992, Differential and Integral Equations.

[36]  E. P. Ryan,et al.  The Circle Criterion and Input-to-State Stability for Infinite-Dimensional Systems , 2008 .

[37]  D. Hinrichsen,et al.  Stability radius for structured perturbations and the algebraic Riccati equation , 1986 .

[38]  Jonathan R. Partington,et al.  Linear Operators And Linear Systems , 2004 .

[39]  Garrett Stuck,et al.  Introduction to Dynamical Systems , 2003 .

[40]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[41]  Stuart Townley,et al.  Stability of NonNegative Lur'e Systems , 2016, SIAM J. Control. Optim..

[42]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[43]  Daniel J. Arrigo,et al.  An Introduction to Partial Differential Equations , 2017, An Introduction to Partial Differential Equations.

[44]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[45]  Eduardo D. Sontag,et al.  A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections , 2002, J. Frankl. Inst..

[46]  J. Gascoigne,et al.  Allee Effects in Ecology and Conservation , 2008 .

[47]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[48]  Hartmut Logemann,et al.  Non-autonomous systems: asymptotic behaviour and weak invariance principles , 2003 .

[49]  Fabian R. Wirth,et al.  An ISS small gain theorem for general networks , 2007, Math. Control. Signals Syst..

[50]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[51]  Eduardo D. Sontag Asymptotic amplitudes and Cauchy gains: a small-gain principle and an application to inhibitory biological feedback , 2002, Syst. Control. Lett..

[52]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[53]  Eric A Sobie,et al.  An Introduction to Dynamical Systems , 2011, Science Signaling.

[54]  Per Kristen Jakobsen,et al.  An Introduction to Partial Differential Equations , 2019 .