Large eddy simulation analysis of the turbulent flow in an optically accessible internal combustion engine using the overset mesh technique

Computational fluid dynamics has become a fundamental tool for the design and development of internal combustion engines. The meshing strategy plays a central role in the computational efficiency, ...

[1]  Preeti S. Abraham,et al.  Évaluation de données de simulation aux grandes échelles (LES) et de vélocimétrie par imagerie de particules (PIV) via une décomposition orthogonale aux valeurs propres invariante en phase (POD) , 2014 .

[2]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[3]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[4]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[5]  M. Matrat,et al.  Numerical investigations on hydrogen-enhanced combustion in ultra-lean gasoline spark-ignition engines , 2019, International Journal of Engine Research.

[6]  Jing Li,et al.  Dual-fuel RCCI engine combustion modeling with detailed chemistry considering flame propagation in partially premixed combustion , 2017 .

[7]  Fabio Berni,et al.  A critical review of flow field analysis methods involving proper orthogonal decomposition and quadruple proper orthogonal decomposition for internal combustion engines , 2021, International Journal of Engine Research.

[8]  T. Poinsot,et al.  Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine , 2012 .

[9]  Daniel C. Haworth,et al.  Application of the proper orthogonal decomposition to datasets of internal combustion engine flows , 2004 .

[10]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[11]  Fabio Berni,et al.  Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines , 2016 .

[12]  Hao Chen,et al.  A practical guide for using proper orthogonal decomposition in engine research , 2013 .

[13]  P. Guibert,et al.  Proper orthogonal decomposition of in-cylinder engine flow into mean component, coherent structures and random Gaussian fluctuations , 2006 .

[14]  Daniel C. Haworth,et al.  Large-Eddy Simulation of in-Cylinder Flows , 1999 .

[15]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[16]  Christopher J. Rutland,et al.  Large-eddy simulations for internal combustion engines – a review , 2011 .

[17]  Christian Hasse,et al.  Identification of Large-Scale Structure Fluctuations in IC Engines using POD-Based Conditional Averaging , 2016 .

[18]  Philip A. Stansfield,et al.  PIV analysis of in-cylinder flow structures over a range of realistic engine speeds , 2007 .

[19]  Ming Jia,et al.  Large eddy simulation and proper orthogonal decomposition analysis of turbulent flows in a direct injection spark ignition engine: Cyclic variation and effect of valve lift , 2014 .

[20]  Fabio Berni,et al.  A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines , 2017 .

[21]  Volker Sick,et al.  TCC-III Engine Benchmark for Large-Eddy Simulation of IC Engine Flows , 2016 .

[22]  K. Jansen,et al.  Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines , 2000 .

[23]  Stefan Buhl,et al.  A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations , 2018 .

[24]  Thierry Poinsot,et al.  LES study of cycle-to-cycle variations in a spark ignition engine , 2011 .

[25]  Andrea Berton,et al.  Overset grids for fluid dynamics analysis of internal combustion engines , 2017 .