The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines.

The design of novel chiral catalysts for asymmetric synthesis is an active field of modern organic chemistry. Chiral phosphoric acid catalysts, pioneered by Akiyama et al. and Terada and co-workers, have been recently applied to a wide range of asymmetric organic transformations. Brønsted acids are used in these asymmetric reactions, mainly to protonate the electrophile, which is thereby activated and ready for attack by a corresponding nucleophile. To our knowledge, the previously reported chiral phosphoric acid catalysts are based on a limited number of backbone scaffolds, namely 3,3’substituted binol (1,1’-bi-2-naphthyl), 3,3’-substituted H8-binol, [5] taddol (a,a,a’,a’-tetraaryl-2,2dimethyl-1,3-dioxolan-4,5-dimethanol), vanol (3,3’-diphenyl-[2,2’binaphthalene]-1,1’-diol), and vapol (2,2’-diphenyl-[3,3’-biphenanthrene]4,4’-diol). The development of new chiral phosphoric acids with tunable backbones and the expansion of their application to other useful asymmetric organic transformations is still a great challenge for chemists. Herein, the design, synthesis, and application of novel double axially chiral phosphoric acid catalysts are reported. The rationale for our design of new chiral phosphoric acid catalysts originated from the observation that substitutents at the 3,3’-positions of binol are very important for achieving high selectivity. The use of 3,3’-nonsubstituted binol phosphate as a catalyst always gave low or even no enantioselectivity. c] We assumed that if the substitutents at the 3,3’positions of binol phosphate I possess a stable double axial chirality, then better performance in organocatalysis may be achieved compared to the mono axially chiral phosphoric acid catalysts based on the same scaffold. For the synthesis of the new catalyst, we removed the middle axial chirality of I to give the simplified compound II. Then for convenience, we further rationally modified II to obtain compound (R,R)-1 (Scheme 1) as the target catalysts. (R,R)-1 has double axial chirality and can be recognized as a “dimeric” form of (R)-

[1]  Magnus Rueping,et al.  Organokatalytische enantioselektive Reduktion von Pyridinen , 2007 .

[2]  M. Rueping,et al.  Organocatalytic enantioselective reduction of pyridines. , 2007, Angewandte Chemie.

[3]  Jian Zhou,et al.  Organocatalytic asymmetric reaction cascade to substituted cyclohexylamines. , 2007, Journal of the American Chemical Society.

[4]  T. Akiyama,et al.  Chiral Brønsted acid catalyzed enantioselective Mannich-type reaction. , 2007, Journal of the American Chemical Society.

[5]  Yuxue Liang,et al.  A Vaulted Biaryl Phosphoric Acid-Catalyzed Reduction of α-Imino Esters: The Highly Enantioselective Preparation of α-Amino Esters , 2007 .

[6]  L. Gong,et al.  Chiral Brønsted acid-catalyzed direct asymmetric Mannich reaction. , 2007, Journal of the American Chemical Society.

[7]  Y. Li,et al.  Enantioselective hydrogenation of quinolines catalyzed by Ir(BINAP)-cored dendrimers: dramatic enhancement of catalytic activity. , 2007, Organic letters.

[8]  M. Beller,et al.  An enantioselective chiral Brønsted acid catalyzed imino-azaenamine reaction. , 2007, Organic letters.

[9]  A. Chan,et al.  Asymmetric hydrogenation of quinolines with high substrate/catalyst ratio. , 2007, Chemical communications.

[10]  Q. Kang,et al.  Highly enantioselective Friedel-Crafts reaction of indoles with imines by a chiral phosphoric acid. , 2007, Journal of the American Chemical Society.

[11]  M. Terada,et al.  Enantioselective friedel-crafts reaction of electron-rich alkenes catalyzed by chiral Brønsted acid. , 2007, Journal of the American Chemical Society.

[12]  L. Gong,et al.  Enantioselective direct aza hetero-Diels-Alder reaction catalyzed by chiral Brønsted acids. , 2006, Organic letters.

[13]  L. Gong,et al.  Highly enantioselective organocatalytic Biginelli reaction. , 2006, Journal of the American Chemical Society.

[14]  B. List,et al.  Highly Enantioselective Transfer Hydrogenation of α,β-Unsaturated Ketones , 2006 .

[15]  T. Akiyama,et al.  Chiral Brønsted acid-catalyzed inverse electron-demand aza Diels-Alder reaction. , 2006, Journal of the American Chemical Society.

[16]  Stephen J. Connon Chirale Phosphorsäuren: wirksame Organokatalysatoren für asymmetrische Additionen an Imine , 2006 .

[17]  S. Connon Chiral phosphoric acids: powerful organocatalysts for asymmetric addition reactions to imines. , 2006, Angewandte Chemie.

[18]  T. Akiyama,et al.  Recent Progress in Chiral Brønsted Acid Catalysis , 2006 .

[19]  Magnus Rueping,et al.  Eine hoch enantioselektive Brønsted‐Säure‐katalysierte Kaskadenreaktion: organokatalytische Transferhydrierung von Chinolinen und deren Anwendung in der Synthese von Alkaloiden , 2006 .

[20]  M. Rueping,et al.  A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. , 2006, Angewandte Chemie.

[21]  R. Kuwano,et al.  Ruthenium-catalyzed asymmetric hydrogenation of N-boc-indoles. , 2006, Organic letters.

[22]  Xiuwen Han,et al.  Asymmetric hydrogenation of quinolines and isoquinolines activated by chloroformates. , 2006, Angewandte Chemie.

[23]  P. White,et al.  Metallophosphite-catalyzed asymmetric acylation of α,β-unsaturated amides , 2006 .

[24]  Eric N. Jacobsen,et al.  Asymmetrische Katalyse durch chirale Wasserstoffbrückendonoren , 2006 .

[25]  Mark S. Taylor,et al.  Asymmetric catalysis by chiral hydrogen-bond donors. , 2006, Angewandte Chemie.

[26]  Y. Ni,et al.  Enantioselective organocatalytic reductive amination. , 2006, Journal of the American Chemical Society.

[27]  B. List,et al.  Catalytic asymmetric Pictet-Spengler reaction. , 2006, Journal of the American Chemical Society.

[28]  F. Glorius Asymmetric hydrogenation of aromatic compounds. , 2005, Organic & biomolecular chemistry.

[29]  J. Antilla,et al.  Brønsted acid-catalyzed imine amidation. , 2005, Journal of the American Chemical Society.

[30]  T. Akiyama,et al.  Enantioselective Mannich-type reaction catalyzed by a chiral bronsted acid derived from TADDOL , 2005 .

[31]  M. Rueping,et al.  Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. , 2005, Organic letters.

[32]  Claude Y. Legault,et al.  Catalytic asymmetric hydrogenation of N-iminopyridinium ylides: expedient approach to enantioenriched substituted piperidine derivatives. , 2005, Journal of the American Chemical Society.

[33]  Carsten Bolm,et al.  Protonierte chirale Katalysatoren: vielseitige Hilfsmittel für die asymmetrische Synthese , 2005 .

[34]  L. Zani,et al.  Protonated chiral catalysts: versatile tools for asymmetric synthesis. , 2005, Angewandte Chemie.

[35]  M. Terada,et al.  Organocatalytic asymmetric aza-Friedel-Crafts alkylation of furan. , 2004, Journal of the American Chemical Society.

[36]  Petri M. Pihko Carbonylaktivierung durch doppelte Wasserstoffbrückenbildung: ein neues Werkzeug für die asymmetrische Katalyse , 2004 .

[37]  P. Pihko Activation of carbonyl compounds by double hydrogen bonding: an emerging tool in asymmetric catalysis. , 2004, Angewandte Chemie.

[38]  M. Terada,et al.  Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. , 2004, Journal of the American Chemical Society.

[39]  Junji Itoh,et al.  Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. , 2004, Angewandte Chemie.

[40]  Xiuwen Han,et al.  Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines. , 2003, Journal of the American Chemical Society.

[41]  P. Schreiner Metal-free organocatalysis through explicit hydrogen bonding interactions. , 2003, Chemical Society reviews.

[42]  Xumu Zhang,et al.  New chiral phosphorus ligands for enantioselective hydrogenation. , 2003, Chemical reviews.

[43]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[44]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[45]  Gerard V. Smith Principles and Applications of Asymmetric Synthesis , 2002 .

[46]  I. Ojima,et al.  Catalytic Asymmetric Synthesis , 1993 .