Interferometry with non-classical motional states of a Bose–Einstein condensate

The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose–Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.

[1]  M. Oberthaler,et al.  Motional coherence of fermions immersed in a Bose gas. , 2013, Physical review letters.

[2]  L. Salasnich,et al.  Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates , 2002 .

[3]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[4]  I. Lesanovsky,et al.  Adiabatic radio-frequency potentials for the coherent manipulation of matter waves , 2006 .

[5]  I. Lesanovsky,et al.  Ultracold atoms in radio-frequency dressed potentials beyond the rotating-wave approximation , 2007 .

[6]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[7]  P. Rebentrost,et al.  Optimal control of a leaking qubit , 2008, 0808.2680.

[8]  J. G. Muga,et al.  Vibrational mode multiplexing of ultracold atoms. , 2013, Physical review letters.

[9]  S. Watts,et al.  Modification of Proteins by Norepinephrine is Important for Vascular Contraction , 2010, Front. Physiology.

[10]  Ulrich Hohenester,et al.  Twin-atom beams , 2010, 1012.2348.

[11]  Molecular Beams , 1938, Nature.

[12]  J. Dalibard,et al.  Relative phase of two Bose-Einstein condensates , 1997 .

[13]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.

[14]  Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling , 1997, cond-mat/9710124.

[15]  J. Schmiedmayer,et al.  Vibrational state inversion of a Bose–Einstein condensate: optimal control and state tomography , 2012, 1212.4173.

[16]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[17]  S. Haroche,et al.  A complementarity experiment with an interferometer at the quantum–classical boundary , 2001, Nature.

[18]  M. Wilkens,et al.  Phase and Phase Diffusion of a Split Bose-Einstein Condensate , 1997 .

[19]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[20]  Thorsten Schumm,et al.  Multilayer atom chips for versatile atom micromanipulation , 2008, 0801.3351.

[21]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[22]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[23]  C. Salomon,et al.  NEUTRAL ATOMS PREPARED IN FOCK STATES OF A ONE-DIMENSIONAL HARMONIC POTENTIAL , 1999 .

[24]  F. Piazza,et al.  Macroscopic superpositions of phase states with Bose-Einstein condensates , 2008, 0803.2265.

[25]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[26]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[27]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[28]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[29]  J. Rottmann,et al.  Single-particle-sensitive imaging of freely propagating ultracold atoms , 2009, 0907.0674.

[30]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[31]  J. Schmiedmayer,et al.  Dynamics of parametric matter-wave amplification , 2012, 1203.5357.

[32]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[33]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[34]  N F Ramsey Experiments with separated oscillatory fields and hydrogen masers. , 1990, Science.

[35]  J. Schmiedmayer,et al.  Integrated Mach–Zehnder interferometer for Bose–Einstein condensates , 2013, Nature Communications.

[36]  R. Butcher,et al.  High-resolution spectroscopy with a molecular beam at 10.6 μm , 2000 .

[37]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[38]  V. Vuletić,et al.  Atom Chips: REICHEL:ATOM CHIPS O-BK , 2011 .

[39]  Siu A. Chin,et al.  A fourth-order real-space algorithm for solving local Schrödinger equations , 2001 .

[40]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[41]  R. Bücker,et al.  Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold , 2010, Nature Physics.

[42]  L. Carr,et al.  Macroscopic superposition states of ultracold bosons in a double-well potential , 2011, 1111.2031.

[43]  Acknowledgements , 1992, Experimental Gerontology.

[44]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[45]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.