The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs)
暂无分享,去创建一个
Michael Dolg | Thierry Leininger | Hermann Stoll | H. Stoll | M. Dolg | T. Leininger | A. Bergner | Andreas Nicklass | Andreas Bergner | Wolfgang Küchle | A. Nicklass | W. Küchle
[1] Hermann Stoll,et al. A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds , 1982 .
[2] L. Serrano-Andrés,et al. Theoretical spectroscopic parameters of the alkali monofluorides LiF, NaF and KF , 1992 .
[3] G. Herzberg. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .
[4] Peter Schwerdtfeger,et al. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .
[5] P. Millié,et al. Nonperturbative method for core–valence correlation in pseudopotential calculations: Application to the Rb2 and Cs2 molecules , 1992 .
[6] T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .
[7] T. Dunning,et al. Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .
[8] D. C. Griffin,et al. Approximate relativistic corrections to atomic radial wave functions , 1976 .
[9] Leo Brewer,et al. THE DISSOCIATION ENERGIES OF GASEOUS ALKALI HALIDES , 1961 .
[10] K. Dyall,et al. Relativistic Corrections to the Properties of the Alkali Fluorides , 1993 .
[11] H. Stoll,et al. On the transferability of energy adjusted pseudopotentiais: a calibration study for XH4 (X=C, Si, Ge, Sn, Pb) , 1994 .
[12] S. Langhoff,et al. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides , 1986 .
[13] P. Fuentealba,et al. Cu and Ag as one‐valence‐electron atoms: Pseudopotential results for Cu2, Ag2, CuH, AgH, and the corresponding cations , 1983 .
[14] W. C. Ermler,et al. Spin-Orbit Coupling and Other Relativistic Effects in Atoms and Molecules , 1988 .
[15] Hans-Joachim Werner,et al. Coupled cluster theory for high spin, open shell reference wave functions , 1993 .
[16] Hans-Joachim Werner,et al. A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .
[17] W. Schwarz. Das Kombinierte Näherungsverfahren , 1968 .
[18] P. Fuentealba,et al. Ground‐state properties of alkali dimers XY (X, Y=Li to Cs) , 1986 .
[19] J. Wood,et al. Improved Pauli Hamiltonian for local-potential problems , 1978 .
[20] P. Schwerdtfeger,et al. The accuracy of the pseudopotential approximation. I. An analysis of the spectroscopic constants for the electronic ground states of InCl and InCl3 using various three valence electron pseudopotentials for indium , 1995 .
[21] P. Fuentealba,et al. Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions , 1982 .
[22] W. Meyer,et al. Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms , 1984 .
[23] M. Jungen. A Gaussian basis for Rydberg orbitals , 1981 .
[24] R. Matcha. Theoretical Analysis of the Electronic Structure and Molecular Properties of the Alkali Halides. VI. Rubidium Fluoride and Sodium Bromide , 1970 .
[25] W. Meyer,et al. Ground‐state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials , 1984 .
[26] H. Stoll,et al. On the importance of core polarization in heavy post-d elements: a pseudopotential calibration study for X2H6 (X = Si, Ge, Sn, Pb) , 1995 .