The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs)

Abstract The performance of large-core pseudopotentials (ECP), simulating X + cores (X = K, Rb, Cs), and corresponding core-polarization potentials (CPP) is critically analyzed in calculations for bond lengths r e , dissociation energies D e , and vibrational frequencies ω e of alkali fluorides XF. It is shown that significant errors arises due to both the ECP modelling of the frozen-core-valence interaction and the CPP treatment of non-frozen-core effects. Correcting for these errors, by introducing small-core ECP and l -dependent CPP, we obtain accuracies of 1 pm for r e , O.1 eV for D e and 5 cm −1 for ω e , in coupled cluster calculations using extended basis sets.

[1]  Hermann Stoll,et al.  A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds , 1982 .

[2]  L. Serrano-Andrés,et al.  Theoretical spectroscopic parameters of the alkali monofluorides LiF, NaF and KF , 1992 .

[3]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[4]  Peter Schwerdtfeger,et al.  Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .

[5]  P. Millié,et al.  Nonperturbative method for core–valence correlation in pseudopotential calculations: Application to the Rb2 and Cs2 molecules , 1992 .

[6]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[7]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[8]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[9]  Leo Brewer,et al.  THE DISSOCIATION ENERGIES OF GASEOUS ALKALI HALIDES , 1961 .

[10]  K. Dyall,et al.  Relativistic Corrections to the Properties of the Alkali Fluorides , 1993 .

[11]  H. Stoll,et al.  On the transferability of energy adjusted pseudopotentiais: a calibration study for XH4 (X=C, Si, Ge, Sn, Pb) , 1994 .

[12]  S. Langhoff,et al.  Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides , 1986 .

[13]  P. Fuentealba,et al.  Cu and Ag as one‐valence‐electron atoms: Pseudopotential results for Cu2, Ag2, CuH, AgH, and the corresponding cations , 1983 .

[14]  W. C. Ermler,et al.  Spin-Orbit Coupling and Other Relativistic Effects in Atoms and Molecules , 1988 .

[15]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[16]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[17]  W. Schwarz Das Kombinierte Näherungsverfahren , 1968 .

[18]  P. Fuentealba,et al.  Ground‐state properties of alkali dimers XY (X, Y=Li to Cs) , 1986 .

[19]  J. Wood,et al.  Improved Pauli Hamiltonian for local-potential problems , 1978 .

[20]  P. Schwerdtfeger,et al.  The accuracy of the pseudopotential approximation. I. An analysis of the spectroscopic constants for the electronic ground states of InCl and InCl3 using various three valence electron pseudopotentials for indium , 1995 .

[21]  P. Fuentealba,et al.  Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions , 1982 .

[22]  W. Meyer,et al.  Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms , 1984 .

[23]  M. Jungen A Gaussian basis for Rydberg orbitals , 1981 .

[24]  R. Matcha Theoretical Analysis of the Electronic Structure and Molecular Properties of the Alkali Halides. VI. Rubidium Fluoride and Sodium Bromide , 1970 .

[25]  W. Meyer,et al.  Ground‐state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials , 1984 .

[26]  H. Stoll,et al.  On the importance of core polarization in heavy post-d elements: a pseudopotential calibration study for X2H6 (X = Si, Ge, Sn, Pb) , 1995 .